|Table of Contents|

Research overview of commercial satellite platform with all-electric propulsion system(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年02期
Page:
13-20
Research Field:
专论与综述
Publishing date:

Info

Title:
Research overview of commercial satellite platform with all-electric propulsion system
Author(s):
ZUO Kun1 2 WANG Min1 LI Min2 TANG Hai-bin2
1. Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, China 2. School of Astronautics, Beijing Univ. of Aeronautics and Astronautics, Beijing 100191, China
Keywords:
electric propulsion all-electric propulsion satellite platform orbit transfer station keeping attitude control
PACS:
V439.4-34
DOI:
-
Abstract:
In recent years, the application of electric propulsion technology has been more and more popular in space propulsion, especially in missions of low earth orbit, geosynchronous earth orbit and interplanetary space. During the satellite transfer, compared with the traditional bipropellant chemical propulsion systems consuming tons of propellant, the all-electric propulsion system only consumes hundreds of kilograms propellant in the process of geosynchronous earth orbit transfer, which reduces the launch mass effectively and improves the business benefit obviously. With all-electric propulsion system, the commercial satellite platform can increase its loading ratio, give full play to its carrying capacity, and improve its combination property. Proceeding from investigation of the electric propulsion system development and application situation, the development status of the electric propulsion commercial satellites abroad is introduced. A detailed program for domestic commercial satellite platform based on all-electric propulsion is presented by conferring the development mode abroad, and in combination with the developing foundation and capability of electric propulsion in China, so that it could make a useful reference for further study in China.

References:

[1]GOEBEL D M, KATZ I. Fundamentals of electric pro- pulsion: ion and Hall thrusters[M]. USA: John Wiley & Sons, 2008.
[2]毛根旺, 付西鹏, 陈茂林. 月球探测器电推进系统的应用研究[J]. 机械科学与技术, 2008, 27(7): 853-856.
[3]边炳秀, 魏延明. 电推进系统在静止轨道卫星平台上应用的关键技术[J]. 空间控制技术与应用, 2008, 34(1): 20-24.
[4]魏延明. 国外卫星推进技术发展现状与未来 20 年发展趋势[J]. 航天制造技术, 2011 (2): 7-12.

[5]高扬. 电火箭星际航行: 技术进展, 轨道设计与综合优化[J]. 力学学报, 2012, 43(6): 991-1019.

[6]迟惑. 全电推进卫星——商业通信卫星的新趋势[J]. 太空探索, 2012 (7): 40-42.
[7]刘江, 赵宏. 卫星电推进应用技术现状及发展[C]//全国第十二届空间及运动体控制技术学术会议论文集, 2006.
[8]谭松林, 何泽夏, 毛根旺. 国外电推进技术的新进展[J]. 火箭推进, 2001, 27(4): 13-18.
[9]张天平, 田华兵, 孙运奎. 离子推进系统用于 GEO 卫星南北位保使命的能力与效益[J]. 真空与低温, 2010 (2): 72-77.
[10]杭观荣, 康小录. 美国AEHF军事通信卫星推进系统及其在首发星上的应用[J]. 火箭推进, 2012, 37(6): 1-8.
[11]杭观荣, 邱刚, 余水淋, 等. 霍尔电推进在AEHF卫星上应用对我国霍尔电推进发展的启示[J]. 真空电子技术, 2013 (3): 5-11.
[12]崔铁民, 唐福俊. 地球静止轨道卫星平台位保应用离子电推进系统方案[J]. 真空与低温, 2009 (2): 90-94.
[13]张乾鹏, 康小录, 施晨毅, 等. 霍尔推力器束流分布特性实验研究[J]. 上海航天, 2012, 29(4): 49-53.
[14]黄建国, 赵华, 任琼英, 等. 螺旋波电推进火星超低轨道维持技术研究[C]//中国宇航学会深空探测技术专业委员会第九届学术年会论文集 (上册), 2012.
[15]CO T C. Operationally responsive spacecraft using electric propulsion[D]. Wright-Patterson Air Force Base, Ohio: Air Force Inst of Tech, 2012.
[16]BAROCELA E, CASSIDY P F. Delta-winged hybrid airship: US, 7093789 [P]. 2006-08-22.
[17]全电推进卫星余震尚存[J]. 卫星与网络, 2013 (5): 14- 14.

Memo

Memo:
-
Last Update: 1900-01-01