[1]REITZ R D. Modeling atomization processes in high-pressure vaporizing sprays[J]. Atomization and Spray Technology, 1987, 3(4): 309-337.
[2]O'ROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup[R]. USA: SAE, 1987.
[3]HUH K Y, GOSMAN A D. A phenomenological model of diesel spray atomization[C]// Proceedings of International Conference for Multiphase Flow. Japan: University of Tsukuba, 1991: 24-27.
[4]CHANG S K, KOO J Y, CHUNG H C. Transient liquid jet breakup model and comparison with phase Doppler measurements[J]. KSME International Journal, 1995, 9(1): 41- 50.
[5]KOO J Y. An overview of liquid spray modeling formed by high-shear nozzle/swirler assembly[J]. KSME International Journal, 2003, 17(5): 726-739.
[6]TRINH H P, CHEN C P. Modeling of turbulent effects on liquid jet atomization and breakup, AIAA-2005-154[R]. USA: AIAA, 2005.
[7]DESJARDINS O, MOUREAU V, PITSCH H. An accurate conservative level set/ghost fluid method for simula- ting turbulent atomization[J]. Journal of Computational Physics, 2008, 227(18): 8395-8416.
[8]FUSTER D, BAGUE A, BOECK T, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[J]. International Journal of Multiphase Flow, 2009, 35(6): 550-565.
[9]IANG X, SIAMAS G A, JAGUS K, et al. Physical mo- delling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays[J]. Progress in Energy and Combustion Science, 2010, 36(2): 131-167.
[10]CHEN X D, MA D J, YANG V. Mechanism study of impact wave in impinging jets atomization, AIAA-2012- 1089[R]. USA: AIAA, 2012.
[11]HERRMANN M. Refined level set grid method for tra- cking interface [R]. USA: Center for Turbulence Research, Stanford University, 2005.
[12]HERRMANN M. A parallel Eulerian interface tracking/ Lagrangian point particle multiscale coupling procedure[J]. Journal of Computational Physics, 2010, 229(3): 745-759.
[13]GROSSHANS H, SZ?SZ R Z, FUCHS L. Full spray si- mulation-coupled volume of fluid and Lagrangian particle tracking methods[C]// 24th European Confer-ence on Liquid Atomization and Spray Systems. Estoril, Portugal:[s.n.],2011: 120-128.
[14]TOMAR G, FUSTER D, ZALESKI S, et al. Multiscale simulations of primary atomization[J]. Computers & Fluids, 2010, 36(10): 1864-1874.
[15]POPINET S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries [J]. Journal of Computational Physics, 2003, 190(2): 572-600.
[16]MA D, CHEN X, KHARE P, et al. Atomization pat-terns and breakup characteristics of liquid sheets formed by two impinging jets, AIAA-2011-97[R]. USA: AIAA, 2011.
[17]VALLIER A, REVSTEDT J, NILSSON H. Procedure for the break-up of cavitation sheet[C]// 4th Interna-tional Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems. Belgrade, Serbia, 2011: 111-120.
[18]WELLER H G, TABOR G, JASAK H, et al. A tensorial approach to computational continuum mechanics using object-orientated techniques[J]. Computers in Physics, 1998, 12(6): 620-630.
[19]BRACKBILL J U, KOTHE D B, ZEMACH C. A con- tinuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[20]RUSCHE H. Computational fluid dynamics of dispersed two-phase flows at high phase fractions[D]. London: Diploma of Imperial College, University of London, 2002.
[21]BERBEROVICE. Investigation of free-surface flow associated with drop impact: numerical simulations and theoretical modeling[D]. Germany: Bosnien und Herzegowina, Technischen Universit?覿t Darmstadt zur, aus Zenica, 2010.
[22]WELLER H G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow [R]. [S.L.]:OpenCFD Ltd., 2008.
[23]YOSHIZAWA A, HORIUTI K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54(8): 2834-2839.
[24]TOUTANT A, LABOURASSE E, LEBAIGUE O, et al. DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: A priori tests for LES two-phase flow modeling[J]. Computers and Fluids, 2008, 37(7): 877-886.
[25]VILLIERS E D, GOSMAN A D, WELLER H G. Large eddy simulation of primary diesel spray atomization, 2004-01-0100 [R]. USA: SAE, 2004.
[26]ERNE G, PETELIN S, TISELJ I. Numerical errors of the volume-of-fluid interface tracking algorithm[J]. International Journal for Numerical Methods in Fluids, 2002, 38(4): 329-350.
[27]ARLOV D, REVSTEDT J, FUCHS L. A different ap- proach for handling large bubbles in a square cross-sectioned bubble column combining large eddy simulation with Lagrangian particle tracking[C]// 6th International Conference on Multiphase Flow. Leipzig, Germany:[s.n.], 2007: 56-62.
[28]LI X Y, SOTERIOU M C. Prediction of high density-ratio liquid jet atomization in crossflow using high fidelity simulations on HPC, AIAA-2012-0175[R]. USA: AIAA, 2012.
[29]ZHANG M, ZHANG Z, LI A, et al. Experimental re- search on spray properties of unlike impinging injectors [J]. Journal of Propulsion Technology, 2000, 21(1): 57- 59. (in Chinese)
[30]EGGELS J, UNGER F, WEISS M, et al. Fully deve- loped turbulent pipe flow: a comparison between direct numerical simulation and experiment[J]. Journal of Fluid Mechanics, 1994, 268(12): 175-209.
[31]RUDMAN M AND BLACKBURN H M. Large eddy simulation of turbulent pipe flow[C]// Proceedings of Second International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia: CSIRO, 1999: 23-30.
[32]VILLIERS E D. The potential of large eddy simulation for the modeling of wall bounded flows[D]. London: Imperial College of Science, 2006.
[33]JUNG K, KHIL T, YOON Y, et al. The breakup characteristics of liquid sheets formed by like-doublet injectors, AIAA-2002-4177[R]. USA: AIAA, 2002.