|Table of Contents|

Numerical calculation of radiative heat flux on nozzle wall of liquid propellant rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年03期
Page:
27-32
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical calculation of radiative heat flux on nozzle wall of liquid propellant rocket engine
Author(s):
ZHOU Yi-peng ZHU Ding-qiang
School of Astronautics, Beihang University, Beijing 100191, China
Keywords:
finite volume methodbackward Monte Carlo methodrocket engine nozzleinfrared radiation
PACS:
V430-34
DOI:
-
Abstract:
The radiative heat flux on the wall of nozzle is calculated to provide the effective reference data for design of rocket engine nozzle and its cooling system. The formulas of finite volume method (FVM) and (backward Monte Carlo method) BMCM, which are appropriate for calculating the radiation heat flux density of nozzle's wall, are derived without the influence of particle. According to different boundary conditions, the characteristics of FVM are analyzed, and the limitation of FVM is proposed. At the end of the paper, taking a 3D model of double-arc nozzle as an example, the self-complied programs in FVM and BMCM are utilized to calculate infrared radiation heat flux density on the nozzle wall according to the different boundary setting. According to the results, the limitation of FVM is verified, and the advantage of BMCM in calculating the radiative heat flux on the nozzle wall surface is affirmed.

References:

[1]MODEST M F. Radiation heat transfer[M]. 2nd ed. Sandiego: Academic Press, 2003: 645-676.
[2]BRIGGS L L, MILLER W F, Jr., LEWIS E E. Ray-effect mitigation in discrete ordinate-like angular finite element approximations in neutron transport[J]. Nuclear Science and Engineering, 1975 (112): 205-217.
[3]RAITHBY G D, CHUI E H. A finite-volume method for predicting a radiant heat transfer enclosures with partici- pating media[J]. ASME Journal of Heat Transfer, 1990, 112(2): 415-423.
[4]CHAI J C, PARHTASARATHY G, LEE H S, et al. Finite volume method for radiation heat transfer procedure for irregular geometries[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(3): 410-415.

[5]NELSON H F. Backward Monte Carlo modeling for rocket plume base heating[J]. Journal of Heat Transfer, 1992, 6(3): 556-558.

[6]郑才浪, 朱定强, 乔要宾. 轨控发动机羽流红外辐射的数值仿真[J]. 宇航学报, 2014, 35(5): 521-527.
[7]WALTERS D V, BUCKIUS R O. Rigorous development for radiation heat transfer in nonhomogeneous absorbing, emitting and scattering media[J]. International Journal of Heat and Mass Transfer, 1992, 35(12): 3323-3333.
[8]MODEST M F. Radiation heat transfer[M]. 2nd ed. San- diego: Academic Press, 2003: 645-676.
[9]LIU L H. Backward Monte Carlo method based on radiation distribution factor[J]. AIAA Journal of Thermo physics and Heat Transfer, 2004, 18(1): 151-153.
[10]柴栋, 方洋旺, 童中翔, 等. 超然冲压发动机喷管红外辐射特性数值模拟[J]. 航空学报, 2013, 34(10): 2300- 2307.
[11]黄伟, 吉洪湖. 加力式涡扇发动机非家里状态部件红外辐射分析[J]. 航空动力学报, 2011, 26(1): 48-53.
[12]谈和平, 夏新林, 刘林华, 等. 计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 194-213.
[13]LUDWING C B, MALKMUS W, REARDON J E, et al. Handbook of infrared radiation from combustion gases, NASA-SP-3080[R]. USA: AIAA, 1973.

Memo

Memo:
-
Last Update: 1900-01-01