|Table of Contents|

Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年04期
Page:
48-54
Research Field:
研究与设计
Publishing date:

Info

Title:
Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine
Author(s):
LI Wen-long GUO Hai-bo NAN Xiang-yi
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
air-turbo-rocket engine thermodynamic cycle ideal cycle work thermal efficiency
PACS:
V434-34
DOI:
-
Abstract:
The basic thermodynamic process of liquid propellant air-turbo-rocket (ATR) engine is analyzed with the first law analysis method of thermodynamics. The cycle work, thermal efficiency and specific impulse of the ideal ATR engine thermodynamic cycle were deducted through calculation of the energy balance. Furthermore, five thermodynamic characteristic parameters which might affect the ideal thermodynamic cycle performance were determined. The effects of these thermodynamic characteristic parameters on the performance of the engine thermodynamic cycle in the ground static state and flight state were analyzed. The results indicate that the increase of turbine expansion ratio, temperature ratios of gas generator and combustion chamber is helpful to the improvement of ATR thermodynamic cycle work and specific impulse, but the fuel specific impulse performance will be decreased while cycle work and thermal efficiency are increased if the compressor pressure ratio is increased; the ideal thermal efficiency increases incoming flow Mach number, whereas the thermodynamic cycle work and fuel specific impulse increase first, and then decrease with the increases of incoming flow Mach number.

References:

[1]BOSSARD J A, CHRISTENSEN K L, FEDUN M H. Return of the solid fuel gas generator ATR, AIAA-87- 1997[R]. USA: AIAA, 1987.
[2]CHRISTENSEN K. Air turborocket/vehicle performance comparison[J]. Journal of Propulsion and Power, 1999, 15(5): 706-712.
[3]SATO T, TANATSUGU N, HATTA H, et al. Developent study of the ATREX engine for TSTO space plane, AIAA 2001-1839[R]. USA: AIAA, 2001.
[4]李成, 蔡元虎, 屠秋野, 等. 射流预冷却吸气式涡轮火箭发动机性能模拟[J]. 推进技术, 2011, 32(1): 1-4.

[5]CHRISTOPHER A S. A parametric study of a gas-generator airturbo ramjet(ATR), AIAA 86-1681[R]. USA: AIAA, 1986.

[6]DAVID R H. A Computer program for the design and off-design performance of an air turbo-rocket(ATR)[D]. Arlington, US: The University of Texas, 1996.
[7]LILLEY J S, HECHT S E, KIRKHAM B C, et al. Experimental evaluation of an air turbo ramjet, AIAA 94-3386 [R]. USA: AIAA, 1994.
[8]CLOUGH J A, LEWIS M J. Component matching for the air turborocket, AIAA 2004-3648[R]. USA: AIAA, 2004.
[9]BUSSI G, COLASURDO G, PASTRONE D. An analysis of air-turborocket performance[J]. Journal of Propulsion and Power, 1995, 11(5): 950-954.
[10]屠秋野, 陈玉春, 苏三买, 等. 固体推进剂吸气式涡轮火箭发动机的建模及特征研究[J]. 固体火箭技术, 2006, 29 (5): 317-319.
[11]陈湘, 陈玉春, 屠秋野, 等. 固体推进剂空气涡轮火箭发动机的非设计点性能研究[J]. 固体火箭技术, 2008, 31(5): 445-448.
[12]屠秋野, 丁朝霞, 陈玉春, 等. 固体推进剂吸气式涡轮火箭发动机的气动热力循环分析[J]. 固体火箭技术, 2009, 32(1): 53-57.
[13]李成, 周正, 屠秋野, 等. 吸气式涡轮冲压发动机性能模拟及验证[J]. 航空动力学报, 2013, 28(11): 2562-2566.
[14]莫然, 刘佩进, 刘洋, 等. 涡轮增压固体冲压发动机热力循环分析[J]. 固体火箭技术, 2011, 34(5): 598-602.
[15]潘宏亮, 周鹏. 空气涡轮液体火箭发动机建模与仿真研究[J].西北工业大学学报, 2009, 27(4): 492-498.
[16]潘宏亮, 林彬彬, 刘洋. 加力式空气涡轮火箭发动机特性研究[J]. 固体火箭技术, 2010, 33(6): 650-655.
[17]沈维道, 蒋智敏, 童钧耕. 工程热力学[M]. 北京: 高等教育出版社, 2001: 268-290.
[18]廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 122-134.

Memo

Memo:
-
Last Update: 1900-01-01