|Table of Contents|

Design of a two dimensional variable geometry inlet with Mach number 2.5~7.0(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年05期
Page:
17-22
Research Field:
研究与设计
Publishing date:

Info

Title:
Design of a two dimensional variable geometry inlet with Mach number 2.5~7.0
Author(s):
LI Yongzhou LIU Xiaowei ZHANG Mengzheng NAN Xiangjun
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
RBCChypersonic inletwide mach number rangevariable geometrynumerical simulation
PACS:
V235.213-34
DOI:
-
Abstract:
A scheme of two-dimensional RBCC variable-geometry inlet with rotating partial top wall and translating cowl is proposed for the RBCC engine with a wide Mach number range from 2.5 to 7.0. The general performance and adjusting method are studied by the numerical simulation. The results show that the general performance of variable-geometry inlet is better in the entire operating range while shock waves seal the cowl in turn in this design concept. Especially, it has nice flow capture ability. In addition, the operating range is broaden by rotating partial top wall, and the inlet is able to start under the over rated condition and at Ma=2.3 by the backward translating cowl. The adjusting method is simple and feasible in engineering application.

References:

[1]FOSTER R W, ESCHER W J D, ROBINSON J W. Studies of an extensively axisymmetric rocket based combined cycle(RBCC) engine powered single-stage-to-orbit (SSTO) vehicle, AIAA 1989-2294[R]. USA: AIAA, 1989.
[2]CZYSZ P A, LITTLE M J. Rocket based combined cycle engine (RBCC): a propulsion system for the 21st century, AIAA1993-5096[R]. USA: AIAA, 1993.
[3]EHRLICH C F. Early studies of RBCC applications and lessons learned for today, AIAA 2000-3105[R]. USA: AIAA, 2000.
[4]吕翔. RBCC推进系统总体设计方法研究[D]. 西安: 西北工业大学, 2008.

[5]张蒙正, 李斌, 王君, 等. 关于RBCC动力系统的思考[J]. 火箭推进, 2013, 39(1): 1-7. ZHANG Meng zheng, LI Bin, WANG Jun, et al. Think- ing about RBCC propulsion system[J]. Journal of Rocket Propulsion, 2013,39(1):1-7.

[6]KODERA M, OGAWA H, TOMIOKA S, et al. Multi- objective design and trajectory optimization of space transport systems with RBCC propulsion via evolutionary algorithms and pseudo spectral methods, AIAA 2014- 0629[R]. USA: AIAA, 2014.
[7]张蒙正, 张玫, 严俊峰, 等. RBCC动力系统工作模态问题[J]. 火箭推进, 2015, 41(2): 1-6. ZHANG Meng zheng, ZHANG Mei, YAN Jun feng, et al. Discussion about work modality of RBCC power system [J]. Journal of Rocket Propulsion, 2015, 41(2): 1-6.
[8]金志光, 张堃元, 刘媛. 马赫数4~7的高超侧压式进气道气动设计与性能[J]. 航空动力学报, 2011, 26(6): 1201- 1208.
[9]COCKRELL C E, AUSLENDER A H, WHITE J A, et al. Aeroheating predictions for the X-43 cowl-closed configuration at Mach 7 and 10, AIAA 2002-0218[R]. USA: AIAA, 2002.
[10]FALEMPIN F, SERRE L. French flight testing program LEA status in 2009, AIAA 2009-7227[R]. USA: AIAA, 2009.
[11]TREFNY C J, ROCHE J M. Performance validation approach for the gtx air-breathing launch vehicle, NASA/TM 2002-211495[R]. USA: NASA, 2002.
[12]BULMAN M, SIEBENHAAR A. The strutjet engine: exploding the myths surrounding high speed airbreathing propulsion, AIAA 1995-2475[R]. USA: AIAA, 1995.
[13]KANDA T, TOMIOKA S, UEDA S, et al. Design of sub-scale rocket-ramjet combined cycle engine model, IAC-05-C4.5.03[R]. [S.l.]: IAC, 2005.
[14]张浩, 李光熙, 李江, 等. 内置中心支板的RBCC变几何二元进气道设计与数值模拟[J]. 固体火箭技术, 2014, 37(2): 184-191.
[15]王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学, 2008.

Memo

Memo:
-
Last Update: 1900-01-01