|Table of Contents|

A novel chemical equilibrium flow algorithm based on total energy conservation(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年01期
Page:
24-31
Research Field:
研究与设计
Publishing date:

Info

Title:
A novel chemical equilibrium flow algorithm based on total energy conservation
Author(s):
JIANG FanCHEN YangFAN XuesongCAI Guobiao
School of Astronautics, Beihang University, Beijing 100191, China
Keywords:
thermodynamic calculationchemical equilibrium flowtotal energy conservationturbine test rig systemnumerical simulation
PACS:
V430-34
DOI:
-
Abstract:
As for the modeling of propellant combustion,the traditional thermodynamic algorithms generally use the total enthalpy conservation to solve constant-pressure adiabatic combustion temperature and equilibrium compositions,which can not consider the wall heat transfer.As for the modeling of combustion-gas flow,the frozen-flow model is usually employed with the assumption that local compositions and the thermophysical properties are instantaneous consistent with those in the combustion chamber,which ignores the slowly-varying effect of these parameters caused by the mixing process of the incoming flow and the residual gas in local grid.In view of the abovementioned weaknesses,a novel chemical equilibrium flow algorithm based on total energy conservation is proposed,which can consider the wall heat transfer.By using Fortran 2008 language and object-oriented programming method,a modular simulation model of chemical equilibrium flow gas generator pipe is established,and is applied to the modeling and simulation of a turbine test rig gas system with 42 components.In comparison with the earlier simulation results and experimental data,the simulation results of the new model make a certain improvement and are closer to the experimental data.

References:

[1]HEATH C M. Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion[J].Journal of propulsion and power, 2014, 30(5): 1334-1356.
[2]CHAPMAN J W. A process for the creation of T-MATS propulsion system models from NPSS data: AIAA 2014- 3931[R]. USA: AIAA, 2014.
[3]晏政, 刘泽军, 程玉强, 等. 航天器推进系统模块化建模方法[J]. 国防科技大学学报, 2012, 34(4): 28-32.
[4]BANDYOPADHYAY A, MAJUMDAR A. Network flow simulation of fluid transients in rocket propulsion systems [J]. Journal of propulsion and power, 2014, 30(6): 1646-1653.
[5]OSIPOV V V, DAIGLE M J, MURATOV C B, et al. Dynamical model of rocket propellant loadingwith liquid hydrogen[J]. Journal of spacecraft and rockets, 2011, 48(6): 987-998.
[6]FREDERICK D K. A new method for constructing fast models of jet engines in Simulink: AIAA 2009-5419 [R]. USA: AIAA, 2009.
[7]陶金伟, 黄金泉, 周文祥. 航空发动机组态建模技术研究[J]. 航空动力学报, 2010, 25(10): 2372-2378.
[8]杨亚晶, 何茂刚, 徐厚达. 水冲压发动机的热力性能分析[J]. 推进技术, 2009, 30(2): 240-245.
[9]高玉闪, 杜正刚, 金平, 等. 热沉式燃烧室热载分析[J]. 航空动力学报, 2010, 25(11): 2619-2624.
[10]KAYADELEN H K, UST Y. Prediction of equilibrium products and thermodynamic properties in H2O injected combustion for CαHβOγNδ type fuels[J]. Fuel, 2013, 113: 389-401.
[11]AL KADY M A,OWIS F M. Numerical simulation of nozzle flow with chemical equilibrium[J]. Journal of engineering and applied sciences, 2013, 8(5): 11-18.
[12]陈阳, 唐振宇, 蔡国飙, 等. 涡轮试验台燃烧装置建模与仿真(Ⅰ)基于混合物分数的分区模型[J]. 推进技术, 2012, 33(6): 981-986.
[13]CHEN Y, CAI G B, ZHANG Z Z, et al.Multi-field coupling dynamic modeling and simulation of turbine test rig gas system[J]. Simulation modelling practice and theory, 2014, 44(4): 95-118.
[14]吕翔, 何国强, 刘佩进, 等. RBCC发动机性能分析模型改进方法研究[J]. 固体火箭技术, 2010, 33(4): 387-390.
[15]汪球, 赵伟, 滕宏辉, 等. 高焓激波风洞喷管流场非平衡特性研究[J]. 空气动力学学报, 2015, 33(1): 66-71.
[16]WEI F Z, WANG H X, MURPHY A B, et al. Numerical modelling of the nonequilibrium expansion process of argon plasma flow through a nozzle[J]. Journal of physics D applied physics, 2013, 46(50): 505205.
[17]SOLSVIK J, HAUG-WARBERG T, JAKOBSEN H A. Implementation of chemical reaction equilibrium by Gibbs and Helmholtz energies in tubular reactor models: application to the steam-methane reforming process[J]. Chemical engineering science, 2016, 140: 261-278.
[18]GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications: NASA RP-1311[R]. USA: NASA, 1996.
[19]陈阳, 高芳, 张振鹏, 等. 准一维可压缩瞬变管流的有限体积模型(Ⅱ)管壁温度场的有限体积模型[J]. 航空动力学报, 2008, 23(2): 317-322.

Memo

Memo:
-
Last Update: 1900-01-01