[1]CHRISTENSEN K. Air turborocket/vehicle performance comparison[J]. Journal of propulsion and power, 1999, 15(5): 706-712.
[2]南向谊, 王栓虎, 李平. 空气涡轮火箭发动机研究的进展与展望[J]. 火箭推进, 2008, 34(6): 31-35.
NAN Xiangyi, WANG Shuanhu, LI Ping. Investigation on status and prospect of air turbine rocket[J]. Journal of rocket propulsion, 2008, 34(6): 31-35.
[3]TANATSUGU N, NARUO Y, ROKUTANDA I. Test results on air turbo ramjet for a future space plane: AIAA 1992- 5054 [R]. USA: AIAA, 1992.
[4]CHRISTENSEN K. Comparison of methods for calcul- ating turbine work in the air turbo rocket[J]. Journal of propulsion and power, 2001, 17(2): 256-261.
[5]SULLEREY R K, PRADEEP A M, KEDIA M. Perform- ance comparison of air turbo rocket engine with different fuel systems: AIAA 2003-4417[R]. USA: AIAA, 2003.
[6]BUSSI G, COLASURDO G, PASTRONE D. Analysis of air-turbo rocket performance[J]. Journal of propulsion and power, 1995, 11(5): 950-954.
[7]TANATSUGU N. Development study on air turboramjet [J]. Journal of the Gas Turbine Society of Japan , 2002 , 30 (1) : 69-71.
[8]MINATO Ryojiro, HIGASHINO Kazuyuki, TANATSUGU Nobuhiro. Design and development of bio-ethanol fueled GG-cycle air turbo ramjet engine for supersonic: UAV ISABE-2013-1654[R]. [S.l.]: ISABE, 2013.
[9]MINATO R, HIGASHINO H, TANATSUGU N. Design and performance analysis of bio-ethanol fueled GG-cycle air turbo ramjet engine: AIAA 2012-0842[R]. USA: AIAA, 2012.
[10]HARADA K, TANATSUGU N, SATO T. Development study on precooler for ATREX engine: AIAA 1999-4897 [R]. USA: AIAA, 1999.
[11]SAWAI Shujiro, SATO Tetsuya, KOBAYASHI Hiroaki, et al. Flight test plan for ATREX engine development: AIAA 2003-7027[R]. USA: AIAA, 2003.
[12]赵祖亮. 吸热型碳氢燃料结焦与超临界压力下传热性质研究[D]. 硕士学位论文, 浙江大学, 2006.
[13]贺芳, 禹天福, 李亚裕. 吸热型碳氢燃料的研究进展[J]. 导弹与航天运载技术, 2005 (1): 26-29.
[14]CASTALDI M J, LEYLEGIAN J C, CHINITZ Wallace, et al. Development of an effective endothermic fuel platform for regeneratively-cooled hypersonic vehicles: AIAA 2006-4403[R]. USA: AIAA, 2006.
[15]刘志琦. 超燃冲压发动机再生冷却技术研究[D]. 长沙: 国防科学技术大学, 2010.
[16]屈云凤. 超燃冲压发动机冷却通道内碳氢燃料传热及裂解特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[17]王夕. 超临界压力吸热型碳氢燃料热裂解及传热特性研究[D]. 北京: 清华大学, 2013.
[18]贾贞健. 吸热型碳氢燃料正癸烷高温裂解机理研究[D].哈尔滨: 哈尔滨工业大学, 2011.
[19]薛金强, 尚丙坤, 王伟, 等. 吸热型碳氢燃料的裂解及结焦研究进展[J]. 化学推进剂与高分子材料, 2010, 8(3): 8-13.
[20]贾贞健, 周伟星, 黄洪雁, 于文力, 碳氢燃料热裂解与引发裂解换热对比实验[J]. 化工学报, 2008, 65(S1):138- 143.
[21]何龙, 潘富敏, 林瑞森. 吸热型碳氢燃料催化裂解的研究述评[J]. 推进技术, 2001, 22(2): 97-100.
[22]WARD T A, ERVIN J S, STRIEBICH R C, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of propulsion and power, 2004, 20(3): 394-402.
[23]咸春雷, 方文军, 张波, 等. 混配型吸热碳氢燃料热裂解及催化裂解[J]. 推进技术, 2003, 24(2): 179-182.
[24]蒋榕培, 周悦, 孙海云. 碳氢燃料裂解促进和抑制作用研究[J]. 浙江大学学报(理学版), 2015, 42(4): 436-439.
[25]ELY J F,HUBER M L. NIST thermophysical properties of hydrocarbon mixtures database(SUPERTRAPP) [R]. USA: NIST, 2016.
[26]胡骏, 吴铁鹰, 曹人靖, 航空叶片机原理[M]. 北京: 国防工业出版社, 2006.