|Table of Contents|

Calculation of fuel gas thermodynamic parameters and transport coefficients for oxygen/kerosene engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年04期
Page:
34-40
Research Field:
研究与设计
Publishing date:

Info

Title:
Calculation of fuel gas thermodynamic parameters and transport coefficients for oxygen/kerosene engine
Author(s):
WANG Xin ZOU Yanghui
Beijing Institute of Space Long March Vehicle, Beijing 100076, China
Keywords:
oxygen/kerosene fuel gas Gibbs free energy equilibrium composition thermo- dynamic parameter calculation transport coefficient calculation
PACS:
V434-34
DOI:
-
Abstract:
In order to provide necessary design parameters for design of the oxygen/kerosene engine and thermal protection, thermodynamic calculation of oxygen/kerosene gas is studied in this paper. The minimization Gibbs free energy calculation model was used to determine equilibrium compositions. The thermodynamic parameters and transport coefficients were derived with a fitting method of formulas. The variation characteristics of equilibrium compositions, and thermodynamic parameters and transport coefficients of oxygen/kerosene gas with pressure and temperature were obtained. The analysis results indicate that hydrolytic dissociation has an significant impact on the equilibrium compositions, and the pressure increase may cause the rising of the initial temperature of hydrolytic dissociation; the pressure began to affect thermodynamic and transport properties seriously after hydrolytic dissociation at high temperature; the diffusion coefficient of components in fuel gas are influenced by the combined effect of temperature and mole fractions. Thermal conductivity has a great effect on Prandtl number. After H2O is dissociated,Prandtl number reduces fast as the thermal conductivity increases quickly.

References:

[1]李斌, 张小平, 马冬英. 我国新一代载人火箭液氧煤油发动机[J]. 载人航天, 2014, 20(5): 427-431.
[2]童景山. 气体混合物及液体混合物的粘度和导热系数[J].化学工程, 1977 (6): 66-84.
[3]陈安斌. 湿燃气热力性质的计算方法[J]. 哈尔滨工业大学学报, 2001, 33(6): 799-801.
[4]苏适, 蔡崧, 徐益谦. 工业燃烧装置的燃气组分及热物理参数计算[J]. 东南大学学报, 1994, 24(4): 67-72.
[5]阮登芳. 燃气热物理性质的计算[C]//中国工程热物理学会工程热力学与能源利用学术会议. [S.l.]: [s.n.], 1999.
[6]POFERL D J, SVEHLA R A. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres: NASA TND-7488[R]. USA: NASA, 1974.
[7]CROOM B H, LEYHE E W. Thermodynamic, transport, and flow properties for the products of methane burned in oxygen-enriched air: NASA SP-3033[R]. USA: NASA: 1966.
[8]姚通, 文斐, 钟北京. 煤油替代燃料燃烧反应骨架机理简化[J]. 工程热物理学报, 2013, 34(6): 1170-1173.
[9]MCBRIDE B J, GORDON S, RENO M A. Thermody- namic data for fifty reference elements: NASA TP-3287 [R]. USA: NASA, 1993.
[10]SVEHLA R A. Transport coefficients for the NASA Lewis chemical equilibrium program: NASA TM-4647 [R]. USA: NASA, 1995.
[11]SVEHLA R A, MCBRIDE B J. Fortran IV computer program for calculation of thermodynaminc and transport properties of complex chemical systems: NASA TND-7056[R]. USA: NASA,1973.
[12]童景山. 流体热物性学-基本理论与计算[M]. 北京: 中国石化出版社, 2008.

Memo

Memo:
-
Last Update: 1900-01-01