|Table of Contents|

Effects of structure parameter design onperformance of micro-nozzle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年05期
Page:
14-19
Research Field:
研究与设计
Publishing date:

Info

Title:
Effects of structure parameter design onperformance of micro-nozzle
Author(s):
WANG HaiyunWANG ChanghuiFAN Cong
College of Aerospace Engineering,Beihang University,Beijing 100191,China
Keywords:
micro-thruster micro-nozzle structure parameter numerical simulation
PACS:
V434.1-34
DOI:
-
Abstract:
The micro-nozzle is remarkably different from traditional macro-nozzle owing to its tiny size,large area-to-volume ratio,low Reynolds number,notable viscous influence and special fabrication.The effects of different divergence half angles,area ratios and etching depths on thrust and specific impulse of the micro-nozzle were studied with the numerical simulation method to investigate the influence of structure parameters on micro-nozzle performance of vaporizing liquid micro-thruster.The results indicate that the larger divergence half angle of the micro-nozzle is in favour of reduction of viscous loss; the best divergence half angle of the micro-nozzle is 30°,which exceeds that of the traditional macro-nozzle; larger area ratio can improve gas expansion coefficient,but it increases viscous loss due to the addition of divergence wall area; both the thrust and specific impulse increase at first with the growth of area ratio until a peak value at 14,where the micro-nozzle perform best and then they decrease; increase of etching depth is beneficial to promote the performance of micro-nozzle.

References:

[1] 尤政, 张高飞, 任大海. MEMS微推进技术的研究[J]. 纳米技术与精密工程, 2004,2(2):98-105.
[2] CEN J W, XU J L. Performance evaluation and flow visualization of a MEMS based vaporizing liquid micro-thruster [J]. Acta astronautica, 2010, 67(3): 468-482.
[3] LOUISOS W F, HITT D L. Viscous effects on performance of two-dimensional supersonic linear micronozzles [J]. Journal of spacecraft & rockets, 2008, 45(4): 706-715.
[4] LOUISOS W F, HITT D L. Viscous effects on performance of three-dimensional supersonic micronozzles [J]. Journal of spacecraft & rockets, 2012, 49(1): 51-58.
[5] LOUISOS W F, HITT D L. Analysis of transient flow in supersonic micronozzles [J]. Journal of spacecraft & rockets, 2011, 48(2): 303-311.
[6] LOUISOS W, HITT D L. Influence of wall heat transfer on supersonic micronozzle performance [J]. Journal of spacecraft & rockets, 2012, 49:450-460.
[7] LOUISOS W F, HITT D L. Numerical studies of supersonic flow in bell-shaped micronozzles [J]. Journal of spacecraft & rockets, 2014, 51(2): 491-500.
[8] 杨海威, 赵阳. 外形设计对微喷管性能的影响[J]. 推进技术, 2007, 28(1):68-72.
[9] 张根烜, 王璐, 张先锋,等. 微喷管流的连续介质模型及其适用性[J]. 计算物理, 2007, 24(5):598-604.
[10] 张先锋, 刘明侯, 李蕾,等. 温度边界条件对微喷管性能的影响[J]. 中国科学技术大学学报, 2008, 38(4):394-399.
[11] 童军杰, 徐进良, 李玉秀,等. 喉部结构对微喷管性能的影响[J]. 航空动力学报, 2009, 24(5):1048-1054.
[12] 童军杰, 岑继文. 三维壁面效应对微喷管性能影响的数值计算[J]. 微纳电子技术, 2011, 48(6):384-390.
[13] 刘赵淼, 张谭. Laval型微喷管内气体流动的计算及分析[J]. 航空动力学报, 2009, 24(7):1556-1563.
[14] 王福军. 计算流体力学分析[M]. 北京:清华大学出版社,2004.

Memo

Memo:
-
Last Update: 2017-11-10