|Table of Contents|

Computation and analysis of thermodynamic parameters of shock wave and detonation wave in H2/O2 rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年06期
Page:
14-25
Research Field:
研究与设计
Publishing date:

Info

Title:
Computation and analysis of thermodynamic parameters of shock wave and detonation wave in H2/O2 rocket engine
Author(s):
JIANG KaiHE Yunqin LIANG Guozhu
School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Keywords:
hydrogen-oxygen rocket engine shock wave detonation wave thermodynamic parameter pressure ratio
PACS:
V434.1-34
DOI:
-
Abstract:
In order to analyze the effects of shock wave and detonation wave on hydrogen oxygen engine more accurately, the thermodynamic parameters are calculated and analyzed, in which the influence of thermo-chemical reactions are fully considered. Dased on the traditional one-dimensional pipe flow model, a chemical equilibrium model is introduced to calculate and analyze the general law of the influence of propellant mixture ratio and chamber pressure on the shock position and thermal parameters, and then the C-J detonation theory based on thermo-chemical equilibrium is used to calculate and analyze the effects of propellant's mixing ratio, initial temperature and initial pressure on detonation wave. The results show that the shock positions in the nozzle expansion section are linear to the pressure in the combustion chamber, and the temperature ratio at the shock wave is about 28%~38% lower than that without thermo-chemical reaction, where the pressure ratio has no significant difference. The temperature ratio and the pressure ratio are minimum at the stoichiometric mixture ratio. The results also show that the detonation wave intensity enhances with the increase of initial pressure and the decrease of initial temperature. And it becomes strongest at the stoichiometric mixture ratio. The detonation pressure and temperature can be up to 220 MPa and 4 500 K respectively, and the wave velocity exceeds 3000 m/s when the initial temperature is 30 K and the initial pressure is 1 MPa. The rules and characteristics of these two kinds of waves in rocket engines can provide a certain conference for engine engineers.

References:

[1] 泽尔道维奇. 激波和高温流体动力学现象物理学[M]. 张树材, 译. 北京:科学出版社, 1980.
[2] MURMAN E T. Analysis of embedded shock waves calculated by relaxation methods [J]. AIAA journal, 2015, 12(5): 735-736.
[3] 申义庆, 高智, 杨国伟. NS方程激波计算的摄动有限差分方法[J]. 空气动力学学报, 2006, 24(3): 335-339.
[4] FETEANU R, GREATRIX D. Traveling shock wave interaction with rocket motor head end [C]// AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. [S.l.]: AIAA, 2013: 123-129.
[5] 路媛媛, 张蒙正, 严俊峰. 火箭推力室喷管内激波对RBCC性能影响分析[J]. 火箭推进, 2013, 39(5): 46-50.
LU Yuanyuan, ZHANG Mengzheng, YAN Junfeng. Influences of shock wave in rocket nozzle on RBCC performance [J]. Journal of rocket propulsion, 2013, 39(5): 46-50.
[6] 谢晓亮. 阿里安火箭5次发射失败简况[J]. 中国航天, 1990(6): 25.
[7] 朱森元. НМ-7氢氧发动机[J]. 导弹与宇航, 1978(3): 88-108.
[8] CHAPMAN D L, CHAPMAN D L. On the rate of explosion in gases [J]. Philosophical magazine, 2009, 47(284): 90-104.
[9] JOUGUST E. On the propagation of chemical reaction in gases [J]. J de mathematiques pures et appliquees, 1905(l): 347-425.
[10] ZELDOVICH Y B. On the theory of the propagation of detonation in gaseous systems [J]. Technical report archive & image library, 1950, 10(1261): 542-568.
[11] VON NEUMANN J. Theory of detonation wave [M]. New York: Pergamon Press, 1963: 1903-1905.
[12] DORING W. On the detonation process in gas [J]. Annal phys, 1943(43): 421-436.
[13] TSUBOI N, ETO K, HAYASHI A K. Detailed structure of spinning detonation in a circular tube [J]. Combustion & flame, 2007, 149(1): 144-161.
[14] NAGAO T, ASAHARA M, HAYASHI A K, et al. Numerical analysis of spinning detonation dependency on initial pressure using AUSMDV scheme [C]// AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. [S.l.]: [s.n.], 2015: 717-727.
[15] 严传俊, 范玮, 黄希桥,等. 新概念脉冲爆震发动机的探索性研究[J]. 自然科学进展, 2002, 12(10): 1021-1025.
[16] YANChuanjun, FAN Wei, HUANG Xiqiao, et al. Exploratory study on new pulse detonation engines [J]. Progress in natural science: materials international, 2003, 13(2): 88-94.
[17] 张博. 气相爆轰动力学[M].北京: 科学出版社, 2012.
[18] 郭红杰, 梁国柱, 马彬,等. 爆震波点火器在氢氧塞式喷管的工程应用[J]. 火箭推进, 2006, 32(6): 16-19.
GUO Hongjie, LIANG Guozhu, MA Bin, et al. Engineering application of detonation wave igniter on hydrogen-oxygen aerospike nozzle engine [J]. Journal of rocket propulsion, 2006, 32(6): 16-19.
[19] 郭红杰, 梁国柱. 爆震波点火器管路传播过程数值模拟[J]. 推进技术, 2006, 27(1): 83-87.
[20] TSUBOI1Nobuyuki, FUJIMOTO Keisuke, MUTO Daiki. Three-dimensional numerical simulation on dispersion process of unsteady high pressure hydrogen jet flow: AIAA 2017-1232 [R]. USA: AIAA, 2017.
[21] CAI Xiaodong, LIANG Jianhan, DEITERDING Ralf, et al. Adaptive simulations of cavity-based detonation in supersonic hydrogen oxygen mixture [J]. International journal of hydrogen energy, 2016, 41: 6917-6928.
[22] COYE B, WATTS J M. Cryogenic, multiphase, hydrogen-oxygen detonations: AIAA 2005-1462 [R]. USA: AIAA, 2005.
[23] GORDON S, MCBRIDE B, ZELEZNIKF J. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties: NASA 85-16663 [R]. USA: NASA, 1985.
[24] REYNOLDS W C. The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Version 3 [R]. [S.l.]: [s.n.], 1986.
[25] 李宜敏,张中钦,张远军. 固体火箭发动机原理[M]. 北京: 北京航空航天大学出版社, 1991.
[26] ZELEZNIKF J.. Calculation of detonation properties and effect of independent parameters on gaseous detonations [J]. ARS Journal, 1962, 32: 606-615
[27] GORDON S, MCBRIDE B. J. Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and chapman-jouguet detonations NASA SP-273 [R]. USA: NASA, 1971.
[28] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005.

Memo

Memo:
-
Last Update: 1900-01-01