|Table of Contents|

Effect of volute throat area on pump performance(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年06期
Page:
44-47
Research Field:
研究与设计
Publishing date:

Info

Title:
Effect of volute throat area on pump performance
Author(s):
YU Qing WANG Xiaofeng ZHANG Dan LI Huimin
Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
liquid rocket engine pump volute throat area engine thrust numerical simulation
PACS:
V434.2-34
DOI:
-
Abstract:
During the development of a certain liquid rocket engine, the adaptability improvement of the pump structure needs to be realized to promote the thrust of the engine. Based on the area ratio principle, the match of the volute throat and impeller in the turbopump-fed liquid rocket engine is designed and studied in this paper. The influence of the variation of volute throat area on pump performance is studied by using the method of combining numerical simulation with experimental research. The pump models with two different area ratios were analyzed. The results indicate that, in the range of the high efficiency, both the pump lift and efficiency are increased with the increase of area ratio of the volute throat to the impeller outlet. The experimental results are tallied with the calculation results. Thus, the match of the volute throat and the impeller can be improved as the volute throat area is widened, which can satisfy the requirement of the thrust enhancement of the engine. Furthermore, the structure is easy to alter, even the final products can be sent back for modification. It is sure that its cost will be reduced greatly.

References:

[1] 王洋,张翔. 低比转速离心泵蜗壳第八断面面积确定新方法[J]. 排灌机械, 2008, 26(1): 29-32.
[2] 李海权. 离心泵蜗壳喉部面积对泵性能的影响[J]. 通用机械, 2003(11): 41-43.
[3] 施卫东,张德胜.低比速离心式消防泵的设计与试验研究[J]. 中国机械工程, 2009, 20(5): 514-517.
[4] 张翠儒,白东安,郭维.液体火箭上面级发动机用超低比转数泵研究[J].火箭推进, 2005, 31(2): 17-22.
ZHANG Cuiru, BAI dong'an, GUO Wei. Research on ultra-low-specific-speed rotation pump for upper stage engine [J]. Journal of rocket propulsion, 2005, 31(2):17-22.
[5] ANDERSON H H. Mine pumps [J].Journal ofmining society, 1984(6):34-38.
[6] WORSTER R C. The flow in volutes and its effects on centrifugal pump performance[J]. Proc mech E, 1963, 177(31):50-60.
[7] 赵瑞勇,张翠儒,刘军年,张晶辉.面积比对变工况泵性能稳定性影响的研究[J].火箭推进,2016, 42(4): 35-40.
ZHAO Ruiyong, ZHANG Cuiru, LIU Junnian, et al. Investigation on influence of different area ratio on stability of centrifugal pump with variable working conditions [J]. Journal of rocket propulsion, 2016, 42(4):35-40.
[8] 袁寿其,曹武陵,陈次昌.面积比原理和泵的性能[J].农业机械学报, 1993, 24(2): 36-40.
[9] 杨军虎,张人会,王春龙,等.低比转速离心泵的面积比原理[J].兰州理工大学学报, 2006, 32(5): 53-55.
[10] 杨军虎,张人会,王春龙,等.计算离心泵面积比和蜗壳面积的方法[J].机械工程学报, 2006, 42(9): 67-70.
[11] 关醒凡. 泵的理论与设计[M]. 北京:机械工业出版社, 1987.

Memo

Memo:
-
Last Update: 1900-01-01