|Table of Contents|

Study on optimal gas film parameters of near-injection region in thrust chamber(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2018年02期
Page:
10-17
Research Field:
研究与设计
Publishing date:

Info

Title:
Study on optimal gas film parameters of near-injection region in thrust chamber
Author(s):
GAO Xingfeng ZHANG Jianwei SUN Bing WANG Taiping
School of Astronautics,Beihang University, Beijing 100191, China
Keywords:
thrust chamber numerical simulation orthogonal test method cooling efficiency combustion efficiency
PACS:
V434.2-34
DOI:
-
Abstract:
A three-dimensional numerical simulation of the gas-gas combustion chamber with the multi-element injector with gas film cooling was investigated to obtain the optimal parameters that affect the gas film cooling of the near-injection region in the thrust chamber of the hydrogen-oxygen rocket engine. In the numerical model, the standard k-ε model and the eddy-dissipation concept model are used to simulate the turbulence and combustion process respectively. The orthogonal test method is used to analyze the effect of the different film parameters. The analysis results show that the gas film can reduce the wall temperature of combustor in the near-injection region effectively and homogenize the wall temperature distribution, play a role in thermal protection of the injector head in a certain extent, and flow rate ratio of the gas film has greater influence on the cooling efficiency and the uniformity in the circumferential direction in comparison with the structure of the gas film inlet. The more homogeneous cooling distribution of the gas film can be achieved by selecting the appropriate gas film flow parameter and gas film inlet structure. The injection of the film has a great influence on the combustion efficiency, especially for the structural parameters of the film inlet. The results obtained in this study could be used to provide a reference for the design of gas film cooling.

References:

[1] IMMICH H, KRETSCHMER J, PRECLIK D. Thrust chamber technology developments for future launch vehicle liquid rocket engines: AIAA 2001-3544 [R]. Reston: AIAA, 2001.
[2] AUPOIX B, MIGNOSI A, VIALA S, et al. Experimental and numerical study of supersonic film cooling [J]. AIAA Journal, 2012, 36(6): 915-923.
[3] 朱森元.氢氧火箭发动机及其低温技术[M].北京:国防工业出版社,1993.
[4] ARNOLD R, SUSLOV D, HAIDN O J. Film cooling of accelerated flow in a subscale combustion chamber [J]. Journal of propulsion & power, 2015, 25(04): 443-451.
[5] ANDREWS G E, GUPTA M L, MKPADI M C. Full coverage discrete hole wall cooling: cooling effectiveness [J]. International journal of turbo & jet engines, 1984, 2(3): 199-212.
[6] O'CONNOR J P, HAJI-SHEIKH A. Numerical study of film cooling in supersonic flow [J]. AIAA Journal, 1991, 10(1): 2426-2433.
[7] 洪寅义,袁新.不同吹风比下平面叶栅气膜冷却数值模拟[C]// 中国工程热物理学会热机气动热力学学术会议.中国工程热物理学会, 2010:1117-1120.
[8] 白江涛,朱惠人,张宗卫,等.流量比对气膜冷却叶片表面换热系数的影响[J].西安交通大学学报, 2011,45(7):95-99.
[9] 任加万, 谭永华. 燃烧室缝槽气膜冷却方案研究[J]. 火箭推进, 2007, 33(6):28-33.
REN Jiawanl, TAN Yonghua. Investigation on the scheme of slot air film cooling combustion chamber [J]. Journal of rocket propulsion, 2007, 33(6): 28-33.
[10] MCBRIDE B J, GORDON S. Computer program for calculation of complex chemical equilibrium compositions and applications [J]. Unknown, 2011,19(4): 443-449.
[11] 蔡国飙.液体火箭发动机气气燃烧及气气喷注器技术[M].国防工业出版社,2012.
[12] 葛绍岩. 气膜冷却[M]. 北京:科学出版社, 1985.
[13] 张德良.计算流体力学教程[M].北京:高等教育出版社,2010.
[14] 赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
[15] 康玉东,孙冰.燃气非平衡流再生冷却流动传热数值模拟[J].推进技术,2011,32(1):119-124.
[16] 方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.

Memo

Memo:
-
Last Update: 1900-01-01