|Table of Contents|

Numerical simulation of combustion for LOX/kerosene engine with pintle injector(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2018年04期
Page:
23-29
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical simulation of combustion for LOX/kerosene engine with pintle injector
Author(s):
YU Nanjia BAO Qilin ZHANG Yang DAI Jian
School of Astronautics, Beihang University,Beijing 100191, China
Keywords:
pintle injector numerical simulation simulation model combustion efficiency
PACS:
V434-34
DOI:
-
Abstract:
In order to study the flow field distribution of the pintle injector with cryogenic and non-hypergolic propellant, the influence of different momentum ratios on the combustion flow field is summarized for the engine. In this paper, a numerical simulation method is used to investigate the distribution of the combustion flow field for LOX/kerosene engine with pintle injector. The simulation model adopts k-ε turbulence model, finite rate/eddy-dissipation combustion model, etc. The simulated results show that the pintle engine can form two recirculation zones in the combustion chamber, which is beneficial to the cooling of the combustion chamber head. In addition, the pintle injector can form liquid film on the wall of combustion chamber, which improves the thermal protection of combustion chamber wall. As the momentum ratio increases, the high temperature area in combustor approaches to the wall of combustion chamber, and the pintle injector achieves the highest combustion efficiency when the momentum ratio is 1.

References:

[1] 安鹏, 姚世强, 王京丽. 针栓式喷注器的特点及设计方法 [J]. 导弹与航天运载技术, 2016(3): 50-4.
[2] 李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考 [J]. 火箭推进, 2017, 43(1): 1-7.
LI Bin, ZHANG Xiaoping, GAO Yushan.Consideration on development of reusable liquid rocket engine in China [J]. Journal of rocket propulsion, 2017, 43(1): 1-7.
[3] ELVERUM G,STAUDHAMMER P. The decent engine for the lunar module: AIAA 67-521 [R]. USA: AIAA, 1967.
[4] AUSTIN B L,HEISTER S D,ANDERSON W E. Characterization of pintle engine performance for nontoxic hypergolic bipropellants [J]. Journal of propulsion and power, 2005, 21(4): 627-635.
[5] 张雪松. 猎鹰火箭的基础:不断升级的梅林发动机 [J]. 卫星与网络, 2017(6): 40-41.
[6] MIN S, RADHAKRISHNAN K, KOO J, et al. Design procedure of a movable pintle injector for liquid rocket engines [J]. Journal of propulsion & power, 2016, 32(1): 1-12.
[7] 邢馥源. 双组元变推力火箭发动机喷注器改进设计 [J]. 推进技术, 1990,11(2):42-45+80.
[8] 雷娟萍, 兰晓辉, 章荣军. 嫦娥三号探测器7500 N变推力发动机研制 [J]. 中国科学:技术科学, 2014(6): 569-575.
[9] 杨涛, 方丁酉, 唐乾刚. 火箭发动机燃烧原理 [M]. 长沙:国防科技大学出版社, 2008.
[10] 于勇. FLUENT入门与进阶教程 [M]. 北京:北京理工大学出版社, 2008.
[11] 张育林. 变推力液体火箭发动机及其控制技术 [M]. 北京:国防工业出版社, 2001.
[12] 王振国. 液体火箭发动机燃烧过程建模与数值仿真 [M]. 北京:国防工业出版社, 2012.
[13] 张连博, 毛晓芳, 汪凤山. 针栓喷注式MMH/NTO推力室燃烧及传热数值仿真 [J]. 推进技术, 2015,36(10): 1487-1494.
[14] 李进贤, 岳春国, 侯晓. 针栓式变推力火箭发动机内流场数值仿真研究 [J]. 计算机仿真, 2009, 26(8): 49-52.

Memo

Memo:
-
Last Update: 1900-01-01