[1] 康小录, 杭观荣, 朱智春.霍尔电推进技术的发展与应用[J].火箭推进, 2017, 43(1): 8-17, 37.KANG X L, HANG G R, ZHU Z C.Development and application of Hall electric propulsion technology[J].Journal of Rocket Propulsion, 2017, 43(1): 8-17, 37.
[2] MIKELLIDES I, KATZ I, HOFER R.Design of a laboratory Hall thruster with magnetically shielded channel walls, phase I: numerical simulations[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011.
[3] HOFER R R, GOEBEL D M, MIKELLIDES I G, et al.Design of a laboratory Hall thruster with magnetically shielded channel walls, phase II: experiments:AIAA 2012-3788 [R].USA: AIAA, 2012.
[4] MIKELLIDES I, KATZ I, HOFER R, et al.Design of alaboratory Hall thruster with magnetically shielded channel walls, phase III: comparison of theory with experiment[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012.
[5] HOFER R R, CUSSON S E.The H9 magnetically shielded hall thruster: IEPC 2017-232 [R].USA: IEPC, 2017.
[6] CONVERSANO R W, GOEBEL D M, HOFER R R, et al.Development and initial testing of a magnetically shielded miniature Hall thruster[J].IEEE Transactions on Plasma Science, 2015, 43(1): 103-117.
[7] CONVEFRSANO R W, HOFER R R, MIKELLIDES I G, et al.Magnetically shielded miniature Hall thruster: design improvement and performance analysis: IEPC 2015-100 [R].Japan: IEPC, 2015.
[8] CONVERSANO R W, GOEBEL D M, HOFER R R, et al.Performance analysis of a low-power magnetically shielded Hall thruster: experiments[J].Journal of Propulsion and Power, 2017, 33(4): 975-983.
[9] CONVERSANO R W, GOEBEL D M, MIKELLIDES I G, et al.Performance analysis of a low-power magnetically shielded Hall thruster: computational modeling[J].Journal of Propulsion and Power, 2017, 33(4): 992-1001.
[10] CONVEFRSANO R W, DAN M G.Magnetically shielded miniature hall thruster: performance assessment and status update:AIAA 2014-3896[R].USA: AIAA journal, 2014.
[11] HUANG W S, WILLIAMS G J, PETERSON P Y, et al.Plasma plume characterization of the HERMeS during a 1722-hr wear test campaign: IEPC 2017-307 [R].USA: IEPC, 2017.
[12] GILLAND J H, PETERSON P Y.Wear Trends of the HERMeS Thruster as a function of throttlepoint: IEPC 2017-207 [R].USA: IEPC, 2017.
[13] ORTEGA A L, MIKELLIDES I G.Numerical simulations for the assessment of erosion in the 12.5-kW Hall effect rocket with magnetic shielding(HERMeS): IEPC 2017-154 [R].USA: IEPC, 2017.
[14] POLK J E, LOBBIA R, BARRIAULT A, et al.Inner front pole cover erosion in the 12.5 kW HERMeS Hall thruster over a range of operating conditions: EPC 2017-409 [R].USA: IEPC, 2017.
[15] GIANNNETTI V, PIRAGINO A.Development of a 5 kW low-erosion Hall effect hruster: IEPC 2017-379[R].USA: IEPC, 2017.
[16] DUCCI C, MISURI T.Magnetically shielded HT100 experimental campaign: IEPC2017-372 [R].USA: IEPC, 2017.
[17] GRIMAUD L, VAUDOLON J, MAZOUFFRE S, et al.Design and characterization of a 200 W Hall thruster in “magnetic shielding” configuration[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016.
[18] 汤海滨, 张广川, 任军学, 等.一种磁场可调的带磁屏蔽效应的低功率霍尔推力器: CN201710438203.2[P].2017-09-15.
[19] 边兴宇.霍尔推力器放电通道壁面分割及磁屏蔽效应研究[D].大连: 大连海事大学, 2018.
[20] 蔡宁泊. 磁聚焦影响霍尔推力器壁面腐蚀的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[21] MOROZOV A I, SAVELYEV V V. Fundamentals of stationary plasma thruster theory [J]. Reviews of Plasma Physics, 2000, 21(2):203-391.
[22] 于达仁. 空间电推进原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[23] POLK J E, DUCHEMIN O B, KOEL B E, et al.The effect of carbon deposition on accelerator grid wear rates in ion engine ground testing:AIAA 2000-3662 [R].USA: AIAA journal, 2000.