|Table of Contents|

Simulation of oxygenating combustion process in altitude simulating test for large thrust hydrogen/oxygen rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年06期
Page:
17-22
Research Field:
研究与技术
Publishing date:

Info

Title:
Simulation of oxygenating combustion process in altitude simulating test for large thrust hydrogen/oxygen rocket engine
Author(s):
GUO Jing ZHANG Jia LI Mao KONG Fanchao ZHANG Jiaxian
(Beijing Engineering Research Center of Aerospace Testing Technology and Equipment, Beijing Institute of Aerospace Testing Technology,Beijing 100074, China)
Keywords:
hydrogen/oxygen rocket engine altitude simulating test hydrogen gas oxygenating combustion
PACS:
V433.9
DOI:
-
Abstract:
In order to study the safe treatment method of fuel-rich gas in liquid rocket engine test and ensure the safety of the engine test process, the hydrogen-rich gas oxygenating combustion scheme was determined based on designing the key parameters of altitude simulation test large thrust hydrogen/oxygen rocket engine in the future.For verifying the scheme feasibility, a simulation model of oxygenating combustion of altitude simulation test for the large thrust hydrogen/oxygen rocket engine was built to simulate the oxygenating combustion process, and the effects of oxygen flow and injection angle on the combustion process and altitude simulation test were studied.Simulation results show the hydrogen-rich gas combusts completely and the altitude simulation test is safe.The more the oxygen supplementation is, the shorter the combustion length is and the more difficult the thermal protection is.The increase of oxygen injection angle has little effect on the hydrogen burnout length, but it makes thermal protection of equipment more difficult.

References:

[1] 郭敬, 孔凡超, 张家仙, 等.发动机试验富燃气体安全处理技术发展综述[J].火箭推进, 2017, 43(6):1-6, 53.GUO J, KONG F C, ZHANG J X, et al.Development of fuel-rich gas safety treatment technology for engine test[J].Journal of Rocket Propulsion, 2017, 43(6):1-6, 53.
[2] 符锡理.国外火箭技术中氢的安全排放与处理[J].国外导弹与宇航,1981,12:23-27.
[3] 火箭发动机研制与试验中的生态安全问题[Z], 莫斯科航空学院教学参考资料,2006.
[4] AHUJA V, HOSANGADI A, ALLGOOD D, et al.Computational analyses in support of sub-scale diffuser testing for the A-3 facility.part 2:unsteady analyses and risk[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virigina:AIAA, 2009.
[5] LIN J,WEST J S,WILLIAMS R W,et al.CFD code validation of wall heat fluxes for a GO2/GH2 single element combustor:AIAA 2005-4524[R].USA:AIAA,2005.
[6] 李茂, 杜正刚, 金平, 等.富氢/富氧燃气同轴直流喷嘴燃烧过程数值模拟[J].北京航空航天大学学报, 2010, 36(4):469-473.
[7] 庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社, 1995.
[8] 高玉闪.液体火箭发动机同轴剪切气-气喷注器研究[D].北京:北京航空航天大学,2011.
[9] 傅德彬.数值仿真及其在航天发射技术中的应用[M].北京:国防工业出版社, 2011:16-52.
[10] SOZER E, HASSAN E, YUN S, et al.Turbulence-chemistry interaction and heat transfer modeling of H2/O2 gaseous injector flows[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston, Virigina:AIAA, 2010.

Memo

Memo:
-
Last Update: 2019-12-20