|Table of Contents|

Variable thrust design and simulation of a gas generator(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年06期
Page:
38-44
Research Field:
研究与技术
Publishing date:

Info

Title:
Variable thrust design and simulation of a gas generator
Author(s):
FU Wenjuan ZENG Qingxuan LI Mingyu
(State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
Keywords:
variable thrust drive gas generator structural design verification test numerical simulation
PACS:
V421.4
DOI:
-
Abstract:
For meeting the launch requirements of a single launch system for missiles with different initial velocities and different weights, a set of gas generator with multiple gas-producing grains, adaptive ignition and variable thrust was deigned.Firstly, according to the missile weight and its velocity requirements, the gas-producing grain was designed preliminarily.Its gas production performance and reliability were tested, providing the basis for the subsequent optimization of structural design and simulation.Then, a numerical simulation method was used to explore the changes of the missile weight, the grain number, the acting time, the internal pressure of launch system and the projectile movement with time.The simulation results show that if the driving conditions are same, the heavier the projectile is, the smaller the velocity is at the exit of the launch tube and the longer the time is.For the same projectile, the more the number of acting grains is, the faster the projectile is at the exit of the launch tube and the shorter the time it takes.In order to prevent the excessive pressure in the launch tube caused by the number of acting grains, the time sequence control device is used to control the time sequence, and the optimal scheme is obtained from the time sequence combination of different acting grains.Simulation and experimental results show that the designed gas generator grain has good combustion performance, adaptive ignition and variable thrust, and its design is basically reasonable.

References:

[1] 申鹏, 吴新跃, 安晨亮.基于能量调节动力系统的变深度冷发射技术[J].导弹与航天运载技术, 2016(2):72-76.
[2] 白俊华, 胡春波.无冷却式发射动力系统的内弹道研究[J].西北工业大学学报, 2012, 30(6):892-897.
[3] 陈庆贵, 齐强, 王海洋, 等.潜射导弹发射内弹道仿真研究[J].导弹与航天运载技术, 2011(6):40-42.
[4] 陈庆贵, 齐强, 朱保义.某型导弹发射内弹道数值仿真[J].海军航空工程学院学报, 2010, 25(5):501-504.
[5] 陈庆贵, 齐强, 周源, 等.发射动力系统内弹道优化设计计算[J].舰船科学技术, 2011, 33(5):91-93, 97.
[6] 何坤.锥阀式燃气流量调节系统设计与实验研究[D].南京:南京理工大学, 2017.
[7] 鲍文, 牛文玉, 陈林泉, 等.固体火箭冲压发动机燃气发生器及燃气流量调节阀建模及仿真[J].固体火箭技术, 2008, 31(6):569-574.
[8] 王玲玲.固体火箭发动机点火过程数值分析[D].哈尔滨:哈尔滨工程大学, 2008.
[9] IWAKIRI T.Gas generator assembly:US 8567819 B2[P].2013-10-29.
[10] DUNAWAY J D, GARBE D J, SAMPSON W P, et al.Gas generators, launch tubes including gas generators and related systems and methods:US 8967046 B2[P].2015-03-03.
[11] DUNAWAY J D, GARBE D J, SAMPSON W P, et al.Gas generators, launch tubes including gas generators and related systems and methods:US 0131070 A1[P].2017-03-28.
[12] HANANO T, YAMAZAKI M.Gas generator:US 10046727 B2[P].2018-08-14.
[13] 秦新华, 叶力华, 周塞塞, 等.燃气发生器固定连接结构可靠性改进设计[J].火箭推进, 2014, 40(6):31-36.QIN X H, YE L H, ZHOU S S, et al.Reliability improvement of fixed connection structure of gas generator[J].Journal of Rocket Propulsion, 2014, 40(6):31-36.
[14] 王鹏, 李旭昌, 徐颖军.固体火箭发动机总体优化设计[J].火箭推进, 2007, 33(4):16-19.WANG P, LI X C, XU Y J.The optimal design of solid rocket motors[J].Journal of Rocket Propulsion, 2007, 33(4):16-19.
[15] GANY A, AHARON I. Internal ballistics considerations of nozzleless rocket motors[J].Journal of Propulsion and Power, 1999, 15(6): 866-873.
[16] 赵坚, 张振鹏. 串装双燃速药柱发动机的内流场计算[J].推进技术, 2001, 22(4):315-318.
[17] 周哲, 王国平, 芮筱亭, 等. 固体脉冲推力器内弹道仿真与优化设计[J].弹道学报, 2016, 28(1): 8-13.
[18] 徐学文, 牟俊林, 任建存, 等.固体火箭发动机喷管瞬态流场特性分析[J].火箭推进, 2015, 41(5):49-53.XU X W,MU J L,REN J C, et al.The analyses of transient flow-field characteristics in the nozzle of SRM[J].Journal of Rocket Propulsion, 2015, 41(5):49-53.
[19] 杨乐, 余贞勇, 何景轩.基于FLUENT的固体火箭发动机点火瞬态内流场仿真影响因素分析[J].固体火箭技术, 2011, 34(4):474-477.
[20] 唐金兰, 刘佩进.固体火箭发动机原理[M].北京:国防工业出版社, 2013.
[21] 乔宏, 伊寅, 李洪伟, 等.固体火箭发动机水下应用时的燃速特性分析[J].火箭推进, 2008, 34(6):23-26.QIAO H, YI Y, LI H W, et al.Identification of burning rate of propellant for solid rocket motor underwater[J].Journal of Rocket Propulsion, 2008, 34(6):23-26.
[22] 湖北航天化学技术研究所.一种燃气发生剂药柱:CN201310200885.5[P].2013-08-28.
[23] 湖北航天化学技术研究所.一种低燃温低残渣型燃气发生剂及其制备方法:CN201711419551.1[P].2018-06-19.
[24] LV J, ZENG Q X, LI M Y.Metal foil gap switch and its electrical properties[J].Review of Scientific Instruments, 2013, 84(4):045101.
[25] ZENG Q X, LV J, LI M Y.Note:The influence of exploding foil shape on energy deposition[J].Review of Scientific Instruments, 2013, 84(6):066105.

Memo

Memo:
-
Last Update: 2019-12-20