|Table of Contents|

Porosity suppression technology for large-depth laser welding(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年06期
Page:
84-89
Research Field:
工艺与材料
Publishing date:

Info

Title:
Porosity suppression technology for large-depth laser welding
Author(s):
SONG Fan1 PAN Pan1 CHEN Xiaojiang2 TANG Lei2 LIU Shengjian2
(1.Shanghai Institute of Space Propusion, Shanghai 201112, China; 2.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China)
Keywords:
laser welding large-depth weld porosity suppression technology process properties
PACS:
TG456.7
DOI:
-
Abstract:
Aiming at the frequent demand for deep penetration laser welding in space engines, and the consequent problem of process porosity, researches on porosity suppression technology were carried out in three process modes.The first type is a non-fusion welding mode, slightly faster welding speed, positively increasing the amount of defocus(≥4 mm), proper oblique incidence in the negative direction(-10°), and supplemental high power.The second type is a non-fusion welding mode, common welding speed, positive defocusing amount, vertical incidence, shaped scanning wave(O-shape), scanning frequency(100~150 Hz), and scanning amplitude(0.4~0.6 mm).The third type is a stable penetration welding mode, slightly slower welding speed, surface focusing, vertical incidence, and appropriate power to ensure the back-width ratio between an appropriate zone(0.45~0.65).Final results show that under the premise of 4mm penetration depth, all of the three methods can control the porosity of the weld to below 5%, which meets the second-level quality requirements of the aerospace welding standard.Meanwhile, the products with the best process specifications have passed the flight test.

References:

[1] 宋凡, 马纪龙, 于康, 等.空间发动机激光深熔焊气孔特性研究[J].焊接, 2018(8):44-49.
[2] MIZUTANI M, KATAYAMA S, MATSUNAWA A.X-ray observation of keyhole instability in zinc molten pool and estimation of recoil pressure in laser welding[C]//Pacific International Conference on Applications of Lasers and Optics.Melbourne, Australia:Laser Institute of America, 2004.
[3] MATSUNAWA A, SEMAK V.The simulation of front keyhole wall dynamics during laser welding[J].Journal of Physics D:Applied Physics, 1997, 30(5):798-809.
[4] 王威, 徐广印, 段爱琴, 等.1420铝锂合金激光焊接气孔形成机理[J].焊接学报, 2005, 26(11):59-62, 2.
[5] 陈俐.航空钛合金激光焊接全熔透稳定性及其焊接物理冶金研究[D].武汉:华中科技大学, 2005.
[6] 宋凡, 张祎玲, 林嘉伟, 等.空间发动机激光焊功率阈值研究[J].火箭推进, 2018, 44(4):40-46.SONG F, ZHANG Y L, LIN J W, et al.Study on power threshold of laser welding for space engine[J].Journal of Rocket Propulsion, 2018, 44(4):40-46.
[7] 庞盛永.激光深熔焊接瞬态小孔和运动熔池行为及相关机理研究[D].武汉:华中科技大学, 2011.
[8] 金湘中.激光深溶焊接小孔效应的理论和试验研究[D].长沙:湖南大学, 2002.
[9] 陈虹.激光光束质量对光束传输聚焦和加工质量的影响[D].北京:北京工业大学, 2006.
[10] 程元勇.激光深熔焊接铝合金孔内等离子体的反韧致辐射吸收研究[D].长沙:湖南大学, 2012.
[11] XIE J.Double beam laser welding[J].Welding Journal, 2002, 81(10):223-230.
[12] 李俐群, 陈彦宾, 陶汪.铝合金双光束焊接特性研究[J].中国激光, 2008, 35(11):1783-1788.
[13] 包刚, 彭云, 陈武柱, 等.超细晶粒钢光束摆动激光焊接的研究[J].应用激光, 2002, 22(2):203-205, 208.
[14] 赵琳, 张旭东, 陈武柱, 等.光束摆动法减小激光焊接气孔倾向[J].焊接学报, 2004, 25(1):29-32.
[15] 滕彬, 杨海锋, 王小朋, 等.激光小孔型气孔产生原因及抑制方法[J].焊接, 2015(9):34-37, 74.
[16] 张甫, 王威, 王旭友, 等.TC4钛合金激光扫描焊接工艺参数对气孔的影响[J].焊接, 2016(2):35-39, 71.

Memo

Memo:
-
Last Update: 2019-12-20