|Table of Contents|

Constitutive relationship of low cost Ti-Al-V-Fe alloy based on strain coupling(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年02期
Page:
85-91
Research Field:
工艺与材料
Publishing date:

Info

Title:
Constitutive relationship of low cost Ti-Al-V-Fe alloy based on strain coupling
Author(s):
WU Xiaoming12 WANG Yu1 GAO Bin1 SU Yanqing2
(1.Xi’an Space Engine Company Limited, Xi’an 710100, China; 2.Harbin Institute of Technology,Haerbin 150001,China)
Keywords:
low-cost titanium alloy hot deformation behavior strain coupling constitutive equation thermal activation energy
PACS:
V463
DOI:
-
Abstract:
In order to determine the optimal hot deformation process window of the new low-cost Ti-Al-V-Fe alloy, the hot deformation behavior was investigated with the deformation temperature of 875~1 100 ℃, strain rate of 0.001~1 s-1 and deformation of 70%.The results indicate that the alloy is a typical negative temperature and positive strain sensitive material, the flow stress is inversely proportional to the deformation temperature and positively proportional to the strain rate.Based on the experimental data of thermal simulation, the Arrhennius functional relation between material constant and strain was solved by a multiple linear regression method.The Arrhennius constitutive equations of α+β two-phase region and β single-phase region were put forward based on the strain coupling.The coupling correlation coefficient reaches 0.98, which indicates that the established model could accurately predict the flow stress when given any strain.The softening mechanism of the alloy in different phase zones is identified according to the thermal activation energy.The single-phase region is dynamic recovery, and the two-phase region is dynamic recrystallization.

References:

[1] 刘全明, 张朝晖, 刘世锋, 等.钛合金在航空航天及武器装备领域的应用与发展[J].钢铁研究学报, 2015, 27(3):1-4.
[2] 石玉峰, 江河, 刘振球.钛技术与应用[M].西安:陕西科学技术出版社,1990:147.
[3] 庾晋, 周洁.金属钛的性能、发展与应用[J].南方金属, 2004(1):17-23.
[4] 朱知寿.我国航空用钛合金技术研究现状及发展[J].航空材料学报, 2014, 34(4):44-50.
[5] 许晓勇, 赵世红, 王召.轻质钛合金喷管在氢氧发动机上的应用研究[J].火箭推进, 2016, 42(4):1-6.XU X Y, ZHAO S H, WANG Z.Application of lightweight titanium alloy nozzle in LOX-LH2 rocket engine[J].Journal of Rocket Propulsion, 2016, 42(4):1-6.
[6] 吴晓明, 王玉, 郭蓓, 等.钛合金裂纹产生原因及改进工艺[J].火箭推进, 2019, 45(6):78-83.WU X M, WANG Y, GUO B, et al.The research on defect analysis of titanium alloy and improved process[J].Journal of Rocket Propulsion, 2019, 45(6):78-83.
[7] 朱知寿, 商国强, 王新南, 等.低成本高性能钛合金研究进展[J].钛工业进展, 2012, 29(6):1-5.
[8] 冯秋元, 佟学文, 王俭, 等.低成本钛合金研究现状与发展趋势[J].材料导报, 2017, 31(9):128-134.
[9] 赵永庆, 李月璐, 吴欢, 等.低成本钛合金研究[J].稀有金属, 2004, 28(1):66-69.
[10] 葛鹏.陆军用低成本钛合金发展现状[C]//第六届海内外中华青年材料科学技术研讨会暨第十五届全国青年材料科学技术研讨会论文集.西安:西北有色金属研究院, 2015.
[11] 王松茂, 白新房, 朱波, 等.钛合金相变点概述[J].西安文理学院学报(自然科学版), 2017, 20(4):92-96.
[12] 李玉涛, 耿林, 徐斌, 等.TC11钛合金相变点的测定与分析[J].稀有金属, 2006, 30(2):231-234.
[13] 田飞, 曾卫东, 马雄, 等.物理分析法与金相法测定BT25钛合金相变点[J].材料热处理学报, 2011, 32(5):1-5.
[14] 陈绍楷, 田弋纬, 常璐, 等.钛合金α+β/β转变温度测定的金相法与差热分析法对比研究[J].稀有金属材料与工程, 2009, 38(11):1916-1919.
[15] 罗皎, 李淼泉, 李宏, 等.TC4钛合金高温变形行为及其流动应力模型[J].中国有色金属学报, 2008, 18(8):1395-1401.
[16] 王静怡.高强高导Cu-Cr-Zr合金的热变形行为研究[D].西安:西安建筑科技大学, 2013.
[17] SELLARS C M, MCTEGART W J.On the mechanism of hot deformation[J].Acta Metallurgica, 1966, 14(9):1136-1138.
[18] ZENER C, HOLLOMON J H.Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics, 1944, 15(1):22-32.
[19] PILEHVA F, ZAREI-HANZAKI A, GHAMBARI M, et al.Flow behavior modeling of a Ti–6Al–7Nb biomedical alloy during manufacturing at elevated temperatures[J].Materials & Design, 2013, 51:457-465.
[20] CHAI R X, GUO C, YU L.Two flowing stress models for hot deformation of XC45 steel at high temperature[J].Materials Science and Engineering:A, 2012, 534:101-110.
[21] 董纪.热处理工艺对25CrMo48V超高强度钢组织及碳化物演变的影响[D].天津:天津大学, 2017.

Memo

Memo:
-
Last Update: 2020-04-25