|Table of Contents|

Experimental investigation on vortex-cooled technology of 150 N GO2/kerosene engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
26-32
Research Field:
研究与设计
Publishing date:

Info

Title:
Experimental investigation on vortex-cooled technology of 150 N GO2/kerosene engine
Author(s):
WANG Yong1 JU Le2 YANG Weidong2 HONG Liu1
(1.Science and Technology on Liquid Rocket Engine Laboratory,Xi’an Aerospace Propulsion Institute,Xi’an 710100,China; 2.Xi’an Aerospace Propulsion Institute,Xi’an 710100,China)
Keywords:
attitude control engine GO2/kerosene vortex-cooled thrust chamber numerical simulation hot-fire test
PACS:
V434.13
DOI:
-
Abstract:
In order to explore the feasibility of GO2/kerosene vortex-cooled thrust chamber used in the attitude control engine with a hundred Newton level, an experimental verification of vortex-cooled technology was carried out. Based on the theoretical analysis and the numerical simulation, the design of 150 N GO2/kerosene vortex-cooled thrust chamber was completed. The numerical simulation results show that the internal swirling area accounts for 87.8% of the chamber diameter, and the combustion chemical reaction occurs in the annular region with 39%~81% of chamber radius. Through the hot-fire test, the combustion chamber achieves the reliable ignition, stable operation and combustion efficiency of 0.91. An effective gas film cooling is formed and the thermal protection of thrust chamber wall and head is reliable, which fully indicates the existence of internal and external double vortex structure

References:

[1] 王爱玲, 林庆国, 吴建军. 运载火箭气氧/煤油姿控发动机技术研究[J]. 上海航天, 2006, 23(5): 6-11.
[2] 许宏博, 吉林, 金盛宇, 等. 气氧/煤油无毒姿控发动机技术研究[J]. 火箭推进, 2015, 41(5): 12-16.
XU H B, JI L, JIN S Y, et al. Technology of GOX/kerosene non-toxic attitude control engine[J]. Journal of Rocket Propulsion, 2015, 41(5): 12-16.
[3] CHIAVERINI M J, MALECKI M J, J ARTHUR S, et al. Vortex combustion chamber development for future liquid rocket engine applications[R]. AIAA 2002-4149.
[4] FANG D Q, MAJDALANI J, CHIAVERINI M J. Simulation of the cold-wall swirl driven combustion chamber[R]. AIAA 2003-5055.
[5] FANG D Q, MAJDALANI J, CHIAVERINI M J. Hot flow model of the vortex cold wall liquid rocket[R]. AIAA 2004-3676.
[6] JARTHUR S, KNUTH W H, MALECKI M J, et al. Development of a LOX/RP-1 vortex combustion cold-wall thrust chamber assembly[R].AIAA 2002-4144.
[7] CHIAVERINI M J, MALECKI M J, J ARTHUR S, et al. Vortex thrust chamber testing and analysis for O2-H2 propulsion applications[R]. AIAA 2003-4473.
[8] CHIAVERINI M J, J ARTHUR S, MUNSON S M. Laboratory characterization of vortex-cooled thrust chambers for methane/O2 and H2/O2[R]. AIAA 2005-4131.
[9] MARK A, RENE V, CRAIG R, et al. Vortex chamber flow field characterization for gelled propellant combustor applications[R]. AIAA 2003-4474.
[10] ROM C G, ANDERSON M H, CHIAVERINI M J. Cold flow analysis of a vortex chamber engine for gelled propellant combustor applications[R]. AIAA 2004-3359.
[11] MUNSON S M, J ARTHUR S, ROCHOLLJ D, et al. Development of a low-cost vortex-cooled thrust chamber using hybrid fabrication techniques[R]. AIAA 2011-5835.
[12] MAICKE B A, MAJDALANI J. Characterization of particle trajectories in the bidirectional vortex engine[R]. AIAA 2015-3849.
[13] MAJDALANI J, CHIAVERINI M J. Characterization of GO2-GH2 simulations of a miniature vortex combustion cold-wall chamber[J]. Journal of Propulsion and Power, 2017, 33(2): 387-397.
[14] 吴东波, 李家文, 常克宇. GH2/GO2涡流冷却推力室设计与数值计算[J]. 火箭推进, 2010, 36(5): 17-22.
WU D B, LI J W, CHANG K Y. Design and numerical calculation of GH2/GO2 vortex-cooled combustion chamber[J]. Journal of Rocket Propulsion, 2010, 36(5): 17-22.
[15] 唐飞, 李家文, 常克宇. 涡流冷却推力室中涡流结构的分析与优化[J]. 推进技术, 2010, 31(2): 165-169.
[16] 李家文, 唐飞, 俞南嘉. 推力室涡流冷却技术试验研究[J]. 推进技术, 2012, 33(6): 956-960.
[17] 李家文, 王化余, 叶汉玉, 等. 涡流冷却推力室燃烧效率分析[J]. 推进技术, 2013, 34(11): 1507-1512.
[18] 路强, 俞南嘉, 李恭楠, 等. GH2/GO2涡流冷却透明燃烧室方案设计及试验研究[J]. 火箭推进, 2013, 39(2): 1-5.
LU Q, YU N J, LI G N, et al. Design and experiment research of GH2/GO2 vortex-cooling transparent combustion chamber[J]. Journal of Rocket Propulsion, 2013, 39(2): 1-5.
[19] 李恭楠, 俞南嘉, 路强. 涡流冷却推力室流场特征与性能仿真[J]. 航空动力学报, 2014, 29(2): 420-426.
[20] YU N J, ZHAO B, LI G N, et al. Experimental and simulation study of a gaseous oxygen/gaseous hydrogen vortex cooling thrust chamber[J]. Acta Astronautica, 2016, 118: 11-20.
[21] 孙得川, 杨建文, 白荣博. 气氧/甲烷涡流冷壁燃烧室流场与壁面耦合传热分析[J]. 推进技术, 2011, 32(3): 401-406.

Memo

Memo:
-
Last Update: 2020-06-25