|Table of Contents|

Design and application of stepper motor measurement and controlling instrument for LOX/kerosene rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
68-74
Research Field:
研究与设计
Publishing date:

Info

Title:
Design and application of stepper motor measurement and controlling instrument for LOX/kerosene rocket engine
Author(s):
WEI Jingfang LIU Jun SUN Haizhi HU Xianglong
(Xi’an Aerospace Propulsion Institute, Xi’an 710100, China)
Keywords:
LOX/kerosene stepper motor measurement and controlling instrument two-way motor shift control synchronous measurement interrupt nesting
PACS:
V433
DOI:
-
Abstract:
To meet the requirements to qualify the characteristics of LOX/kerosene engine under changing working conditions and extreme working conditions during ground hot tests, a motor measuring and controlling instrument with an integrated isolation technology was proposed to different types of flow regulators and fuel throttle valve. The flow valve stepper motor was controlled to complete the measurement and control work ranged from motor detection, adjustment component test, engine assembly, hot test to the delivery. In the research process, key technologies such as variable speed control of timer frequency conversion interrupt motor, PWM chopper subdivision drive, multi-level interrupt nesting and long-distance measurement were adopted. As result, the requirements of fast start-stop smooth control of stepper motor under long distance and large driving torque, and the independent test of the two-way motor at the same time and the simultaneous measurement of the angle were fulfilled, thus the thrust and mixing ratio of the LOX/kerosene engine test process were stably adjusted. More than 400 hot tests and various verified tests had been conducted, and the motor control frequency deviation is less than ±2 Hz, and the angle control accuracy is better than ±0.25

References:

[1] 范瑞祥, 郑立伟, 宋强, 等. 发动机推力调节能力对系列构型运载火箭总体性能影响研究[J]. 载人航天, 2014, 20(5): 393-398.
[2] 谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209.
[3] 陈维宇, 程亚威, 李小明, 等. 高压小流量稳流型调节器特性研究[J]. 火箭推进, 2011, 37(4): 40-44.
CHEN W Y, CHENG Y W, LI X M, et al. Characteristics of low-output flow-stabilized regulator under high working pressure[J]. Journal of Rocket Propulsion, 2011, 37(4): 40-44.
[4] 许志宇, 李小明. 过载对流量调节器静态特性的影响研究[J]. 火箭推进, 2016, 42(3): 63-67.
XU Z Y, LI X M. Effects of overload on static characteristics of liquid-flow regulator[J]. Journal of Rocket Propulsion, 2016, 42(3): 63-67.
[5] 樊留强, 惠延波, 王莉. 步进电机加减速控制新方法的研究[J]. 电机与控制应用, 2017, 44(3): 36-39.
[6] 杜家熙, 陈艳锋, 李国厚. 基于单片机的步进电机控制器设计[J]. 煤矿机械, 2007, 28(2): 88-91.
[7] 陈志聪. 步进电机驱动控制技术及其应用设计研究[D]. 厦门: 厦门大学, 2008.
[8] 唐佳伟. 两相混合式步进电机细分控制器的设计[D]. 杭州: 浙江理工大学, 2015.
[9] 李玲娟. 多细分二相混合式步进电机驱动器的研制[D]. 西安: 西北工业大学, 2007.
[10] 王祖麟, 李志雄. 步进电机一体化控制系统的设计与实现[J]. 电子技术, 2014, 43(8): 49-51.
[11] 林瑞燊, 孙兴进. 步进电动机的细分电流波形及其实现[J]. 上海大学学报(自然科学版), 1999, 5(6): 501-504.
[12] MAN Z H, YU X H, ESHRAGHIAN K, et al. A robust adaptive sliding mode tracking control using an PBF neural network for robotic manipulators[C]// IEEE International Conference on Neural Networks.[S.l.]:IEEE,1995.
[13] 魏京芳.液氧煤油发动机电机测控技术研究[C]//首届中国空天推进技术论坛2018年学术年会.西安:航天推进技术研究院,2018.
[14] 李彦丽. 步进电机失步原因分析及常见故障检测[J]. 电子工业专用设备, 2014, 43(12): 39-42.
[15] 宋波, 韦薇, 张孝其. 两相混合式步进电机驱动器的设计[J]. 电子工业专用设备, 2014, 43(2): 53-56.
[16] 赵涛, 季宁一, 刘汉忠, 等. 步进电动机SPWM微步距细分控制的研究[J]. 微特电机, 2018, 46(4): 72-74.
[17] 李玲娟, 刘景林, 王灿. 两相混合式步进电机恒转矩细分驱动技术研究[J]. 微电机, 2007, 40(3): 48-50.
[18] PICKUP I E D, RUSSELL A P. Nonlinear model for predicting settling time and pull-in rate in hybrid stepping motors[J]. Proceedings of the Institution of Electrical Engineers, 1979, 126(4): 307.

Memo

Memo:
-
Last Update: 2020-06-25