|Table of Contents|

Exploration and consideration on digital transformation of liquid-propellant engine development system(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年04期
Page:
14-22
Research Field:
专论与综述
Publishing date:

Info

Title:
Exploration and consideration on digital transformation of liquid-propellant engine development system
Author(s):
CHEN YanlinXU Yifeng
(Academy of Aerospace Liquid Propulsion Technology,Xi’an 710100,China)
Keywords:
liquid-propellant engine development system digital transformation process reengineering digital mockup
PACS:
V413
DOI:
-
Abstract:
Under the trend of digital transformation,how to optimize and upgrade the development system of liquid-propellant engine,and support the comprehensive improvement of liquid-propellant engine technology and ability has become an urgent problem to be solved.Based on the analysis of the current situation and trend of digital transformation of aerospace enterprises at home and abroad, and the integration process of digital technology and liquid-propellant engine, the overall framework of the digital development system of liquid-propellant engine was put forward through the process reengineering.Combined with engineering practice, collaborative development, integrated design, knowledge management,digital manufacturing were explored,and the work of digital transformation was considered in depth.The path of the transformation and the challenges of information system construction were analyzed emphatically.It provides the direction for accelerating the digital transformation of the liquid-propellant engine development system, and also has reference significance for the digital transformation of other manufacturing industries.

References:

[1] 张贵田.高压补燃液氧煤油发动机[M].北京: 国防工业出版社, 2005.
[2] 李斌, 栾希亭, 张小平.载人登月主动力: 大推力液氧煤油发动机研究[J].载人航天, 2011, 17(1): 28-33.
[3] 龚奕利,贺莲,胡创.云计算:概念、技术与架构[M].北京:机械工业出版社,2014.
[4] 朱洁, 罗华霖.大数据架构详解: 从数据获取到深度学习[M].北京: 电子工业出版社, 2016.
[5] 包政.互联网的本质[M].北京: 机械工业出版社, 2018.
[6] 魏毅寅.工业互联网:技术与实践[M].北京: 电子工业出版社, 2017.
[7] 陈仲铭, 何明.深度强化学习原理与实践[M].北京: 人民邮电出版社, 2019.
[8] 安筱鹏.重构: 数字化转型的逻辑[M].北京: 电子工业出版社, 2019.
[9] 朱宁昌.液体火箭发动机设计[M].北京: 宇航出版社, 1994.
[10] 周阳, 于勇, 顾黎, 等.基于特征的MBD模型检索方法研究[J].组合机床与自动化加工技术, 2018(10): 151-155.
[11] 乔立红, 考书婷, 杨志兵.三维数字化工艺模型及其表达框架[J].机械工程学报, 2015,51(8): 164-171.
[12] 冯潼能, 王铮阳, 孟静晖.MBD技术在数字化协同制造中的应用与展望[J].南京航空航天大学学报, 2012, 44(S1): 132-137.
[13] RUEMLER S P,ZIMMERMAN K E, HARTMAN N W,et al.Promoting model-based definition to establish a complete product definition[J].Journal of Manufacturing Science and Engineering: Transactions of the ASME,2017,139(5):56-60.
[14]ALEMANNI M, DESTEFANIS F, VEZZETTI E.Model-based definition design in the product lifecycle management scenario[J].The International Journal of Advanced Manufacturing Technology, 2011, 52(1/2/3/4): 1-14.
[15] 戴晟, 赵罡, 于勇, 等.数字化产品定义发展趋势: 从样机到孪生[J].计算机辅助设计与图形学学报, 2018, 30(8): 1554-1562.
[16] 郭洪杰, 冯子明, 张永亮, 等.以模型为核心的飞机智能化装配工艺设计[J].航空制造技术, 2017,60(11): 64-69.
[17] 牛鸿斌, 苏铁熊, 张艳岗, 等.MBD在发动机制造领域的应用[J].机械设计与研究, 2014, 30(1): 89-91.NIU H B, SU T X, ZHANG Y G, et al.Research on the application of model-based definition to the engine manufacturing[J].Machine Design & Research, 2014, 30(1): 89-91.
[18] 郭建华, 李新保.基于三维模型的雷达结构件数字化检测技术应用[J].电子机械工程, 2019, 35(2): 61-64.
[19] 宋凯.基于MBD技术的数字化样机的建立[J].科技展望, 2016, 26(15): 118.
[20] 胡长明, 操卫忠, 王长武, 等.复杂电子装备结构数字化样机探索与实践[J].电子机械工程, 2017, 33(6): 1-9.
[21] RIASCOS R, LEVY L, STJEPANDIC J, et al.Digital mock-up[M]//Concurrent Engineering in the 21st Century.Cham: Springer International Publishing, 2015: 355-388.
[22] FUKUDA S,LULIC Z,STJEPANDIC J.FDMU-functional spatial experience beyond DMU[C]//Proceedings of the 20th ISPE International Conference on Concurrent Engineering.Amsterdam:IOS Press,2013.
[23] 陶飞, 张萌, 程江峰, 等.数字孪生车间: 一种未来车间运行新模式[J].计算机集成制造系统, 2017, 23(1): 1-9.
[24] LI C Z, MAHADEVAN S, LING Y, et al.Dynamic Bayesian network for aircraft wing health monitoring digital twin[J].AIAA Journal, 2017, 55(3): 930-941.
[25] ZAKRAJSEK A J, MALL S.The development and use of a digital twin model for tire touchdown health monitoring[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Grapevine, Texas.Reston, Virginia: AIAA, 2017.
[26] SESHADRI B R, KRISHNAMURTHY T.Structural health management of damaged aircraft structures using digital twin concept[C]//25th AIAA/AHS Adaptive Structures Conference.Grapevine, Texas.Reston, Virginia: AIAA, 2017.
[27] TUEGEL E J, KOBRYN P, ZWEBER J V, et al.Digital thread and twin for systems engineering: design to retirement[C]//55th AIAA Aerospace Sciences Meeting.Grapevine, Texas.Reston, Virginia: AIAA, 2017.
[28] 于勇, 范胜廷, 彭关伟, 等.数字孪生模型在产品构型管理中应用探讨[J].航空制造技术, 2017,60(7): 41-45.
[29] 徐根红, 李长杰, 倪炎榕, 等.基于成熟度的飞机工装协同设计管理研究与应用[J].机械制造, 2013, 51(9): 73-76.
[30] 周安宁, 李文正.面向飞机协同设计的零部件成熟度评估方法[J].中国机械工程, 2013, 24(1): 61-65.
[31] 孙炜, 许旭东, 余志强.基于VPM的并行工程在飞机研制过程中的研究初探[J].航空制造技术, 2013,56(13): 47-51.
[32] 袁家军.航天产品成熟度研究[J].航天器工程, 2011, 20(1): 1-7.
[33] 朱传敏, 陈明, 周润青, 等.产品成熟度管理策略在协同设计中的研究与应用[J].制造业自动化, 2010, 32(9): 14-17.
[34] Jr MENDES P, LEAL J E, THOME A M T.A maturity model for demand-driven supply chains in the consumer product goods industry[J].International Journal of Production Economics, 2016, 179: 153-165.
[35] MAASOUMANM A, DEMIRLI K.Development of a lean maturity model for operational level planning[J].The International Journal of Advanced Manufacturing Technology, 2016, 83(5/6/7/8): 1171-1188.
[36] 刘雅星.航空制造业数字化协同技术综述[J].航空制造技术, 2015,58(18): 66-71.
[37] 王丹, 陈宏玉, 周晨初.通用化液体火箭发动机静态特性仿真平台[J].火箭推进, 2019,45(4): 32-37.WANG D, CHEN H Y, ZHOU C C.Universal simulation platform for static characteristic of liquid rocket engine[J].Journal of Rocket Propulsion, 2019,45(4): 32-37.
[38] OMG.OMG SysML v1.5:OMG systems modeling language(OMG SysML)[S].America:Object Management Group,2017.
[39] 张绍杰.基于MBSE的民用飞机安全关键系统设计[J].中国科学(技术科学),2018,48(3):299-311.
[40] LEMAZURIER L, CHAPURLAT V,GROSSETETE A.An MBSE approach to pass from requirements to functional architecture[J].IFAC-Papers On Line, 2017, 50(1): 7260-7265.
[41] ABDOLI S, KARA S.Designing warehouse logical architecture by applying object oriented model based system engineering[J].Procedia CIRP, 2016, 50: 713-718.
[42] MARSHALL J,FERGUSON R,ASSADZADEH L.Using model based systems engineering structures for onboard spacecraft electronics[C]∥Proceedings of the IEEE Aerospace Conference.[S.l.]:IEEE,2018.
[43] CHANG S,WANG Y.Civil aircraft IVHM system analysis using model based system engineering[C]∥Proceedings of the International Conference on Reliability Systems Engineering.[S.l.]:IEEE,2017.
[44] MORDECAI Y, ORHOF O, DORI D.Model-based interoperability engineering in systems-of-systems and civil aviation[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(4): 637-648.
[45] 赵建军, 丁建完, 周凡利, 等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报, 2006, 18(S2): 570-573.
[46] 孙莹, 汤科, 邹新军.航天产品三维数字化制造模式探索与实践[J].航天制造技术, 2012(6): 30-33.
[47] 赵强, 许建新, 董思洋, 等.面向数字化制造的工艺执行系统关键技术研究[J].机械科学与技术, 2012, 31(12): 1910-1915.
[48] 谭建荣,刘振宇.智能制造关键技术与企业应用[M].北京:机械工业出版社,2018.
[49] 曾鹏飞, 任凯斌, 张星, 等.面向精益生产的集成化车间生产管理系统开发[J].沈阳理工大学学报, 2018, 37(1): 51-57.
[50] 郭洪杰, 冯子明, 张永亮, 等.以模型为核心的飞机智能化装配工艺设计[J].航空制造技术, 2017,60(11): 64-69.
[51] 姜佳俊, 饶勇, 王宁, 等.基于模型的飞机部件数字化检验技术研究[J].机械设计与制造, 2019(4): 185-188.
[52] 于勇, 周阳, 曹鹏, 等.基于MBD模型的工序模型构建方法[J].浙江大学学报(工学版), 2018, 52(6): 1025-1034.
[53] 范玉斌, 刘闯, 吴红兵, 等.全三维模型驱动的复杂产品智能制造[J].计算机集成制造系统, 2017, 23(6): 1176-1186.
[54] 赵雯, 廖馨, 代坤, 等.虚拟试验验证技术发展思路研究[J].计算机测量与控制, 2009, 17(3): 437-439.
[55] 谭永华, 蔡国飙.振动台虚拟试验仿真技术研究[J].机械强度, 2010, 32(1): 30-34.
[56] 陶飞, 刘蔚然, 张萌, 等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统, 2019, 25(1): 1-18.
[57] 王兴山.数字化转型中的企业进化[M].北京: 电子工业出版社, 2019.
[58] 钟华.企业IT架构转型之道: 阿里巴巴中台战略思想与架构实战[M].北京: 机械工业出版社, 2017.
[59] TAO F, QI Q L.New IT driven service-oriented smart manufacturing: framework and characteristics[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 81-91.

Memo

Memo:
-
Last Update: 2020-07-30