|Table of Contents|

Numerical simulation of mixing flow in the head of powder fuel ramjet(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年05期
Page:
35-41
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical simulation of mixing flow in the head of powder fuel ramjet
Author(s):
REN Mengfei1XI Wenxiong1LUO Shibin1DENG Zhe2ZHANG Zhengze2
(1.School of Aeronautics and Astronautics, Central South University, Changsha 410083, China; 2.Xi’an Modern Chemistry Research Institute, Xi’an 710065, China)
Keywords:
powder ramjet engine afterburner head structure mixing efficiency pressure loss
PACS:
TJ55
DOI:
-
Abstract:
In order to analyze the effect of the head structure on the internal mixing flow of the powder fuel ramjet engine, based on the configuration of a typical powder fuel ramjet, a square head and around head of the engine with double lower side intake were designed.The effect of the structural design of the square head and the circular head on the flow field in the afterburner chamber was analyzed and compared by the 3D numerical simulation method of component transport.The results demonstrate that the square head only forms a weak recirculation zone at the head of the afterburning chamber, and the pressure recovery coefficient of each section decreases gradually along the flow direction.However, the round head structure forms a symmetric strong backflow area at the symmetric plane, making the flow of the afterburning chamber more beneficial to the powder injection, and the mixing efficiency and pressure recovery coefficient of each section are larger than the square head.

References:

[1] GOROSHIN S, HIGGINS A, LEE J.Powdered magnesium-carbon dioxide propulsion concepts for Mars missions[C]//35th Joint Propulsion Conference and Exhibit.Los Angeles, CA, USA.Reston, Virigina: AIAA, 1999: 2408.
[2] FOOTE J P, LITCHFORD R J.Powdered magnesium-carbon dioxide rocket combustion technology for in situ mars propulsion[Z].2007.
[3] GOROSHIN S, HIGGINS A, KAMEL M.Powdered metals as fuel for hypersonic ramjets[C]//37th Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2001.
[4] ONERA.Ramjet, scramjet and PDE-an introduction[Z].2002.
[5] MILLER T, HERR J.Green rocket propulsion by reaction of Al and Mg powders and water[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2004.
[6] ABBUD-MADRID A, MODAK A, BRANCH M C, et al.Combustion of magnesium with carbon dioxide and carbon monoxide at low gravity[J].Journal of Propulsion and Power, 2001, 17(4): 852-859.
[7] SHAFIROVICH E, SHIRYAEV A A, GOLDSHLEGER U I.Magnesium and carbon dioxide-a rocket propellant for Mars missions[J].Journal of Propulsion and Power, 1993, 9(2): 197-203.
[8] SHAFIROVICH E, VARMA A.Metal-CO2 propulsion for Mars missions: current status and opportunities[J].Journal of Propulsion and Power, 2008, 24(3): 385-394.
[9] 韩超.粉末冲压发动机燃料供应系统研究[D].长沙: 国防科学技术大学, 2006.
[10] 孔龙飞, 夏智勋, 胡建新, 等.粉末燃料供应装置中增设扰流锥体数值模拟研究[J].火箭推进, 2012, 38(2): 56-62.
KONG L F, XIA Z X, HU J X, et al.Numerical investigation of fluid disturbing cone added in powdered fuel feeding system[J].Journal of Rocket Propulsion, 2012, 38(2): 56-62.
[11] 刘一.金属粉末燃料供应与燃烧的数值研究[D].哈尔滨: 哈尔滨工程大学, 2015.
[12] 许一楠.金属粉末燃料发动机燃料供应系统研究[D].哈尔滨: 哈尔滨工程大学, 2018.
[13] 杨晋朝.粉末燃料冲压发动机内镁颗粒群着火燃烧特性研究[D].长沙: 国防科学技术大学, 2013.
[14] 杨晋朝, 夏智勋, 胡建新, 等.粉末燃料高效装填技术研究[J].固体火箭技术, 2013, 36(1): 37-44.
[15] 刘龙.镁硼混合粉末燃料冲压发动机点火自维持燃烧特性研究[D].长沙: 国防科学技术大学, 2014.
[16] 申慧君, 夏智勋, 胡建新, 等.粉末燃料冲压发动机自维持稳定燃烧试验研究[J].固体火箭技术, 2009, 32(2): 145-149.
[17] 申慧君, 夏智勋, 胡建新, 等.粉末燃料冲压发动机燃烧室两相流数值模拟[J].固体火箭技术, 2007, 30(6): 474-477.
[18] 孙海俊, 胡春波, 徐义华.粉末推进剂流化过程及高压流化机制分析[J].推进技术, 2018, 39(12): 2853-2862.
[19] 张虎, 胡春波, 孙海俊, 等.稠密气固两相流颗粒质量流量测量方法研究[J].固体火箭技术, 2015, 38(1): 136-140.
[20] SUN H J, HU C B, ZHANG T, et al.Experimental investigation on mass flow rate measurements and feeding characteristics of powder at high pressure[J].Applied Thermal Engineering, 2016, 102: 30-37.
[21] SUN H J, HU C B, ZHU X F, et al.Experimental investigation on incipient mass flow rate of micro aluminum powder at high pressure[J].Experimental Thermal and Fluid Science, 2017, 83: 231-238.
[22] 陈静敏, 李志永, 王登云, 等.旁侧突扩加热器燃烧性能研究[J].推进技术, 2013, 34(12): 1677-1681.
[23] 赵春宇, 李斌, 鞠玉涛.环向进气固体火箭冲压发动机补燃室流场数值模拟[J].弹箭与制导学报, 2008, 28(2): 136-138.
[24] 郑凯斌, 陈林泉, 张胜勇.中心进气式固体火箭冲压发动机试验研究[J].固体火箭技术, 2007, 30(2): 124-127.
[25] 王希亮, 孙振华.头部两侧和单侧进气对固冲发动机燃烧影响[J].现代防御技术, 2016, 44(2): 68-73.
[26] 王希亮, 孙振华, 贺永杰, 等.头部两侧进气固冲发动机补燃室内流场研究[J].航空兵器, 2011(5): 51-55.
[27] 王金金, 查柏林, 张炜, 等.进气道结构对固体冲压发动机补燃室燃烧及内壁流场的影响[J].北京航空航天大学学报, 2019, 45(5): 989-998.
[28] 胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙: 国防科学技术大学, 2006.
[29] VANKA S, CRAIG R, STULL F.Mixing, chemical reaction and flow field development in ducted rockets[C]//21st Joint Propulsion Conference.Reston, Virigina: AIAA, 1985: 1271.
[30] KOPCHENOV V, LOMKOV K.The enhancement of the mixing and combustion processes in supersonic flow applied to scramjet engine[C]//28th Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 1992.

Memo

Memo:
-
Last Update: 2020-10-20