[1] KIM K T.Nonlinear interactions between the fundamental and higher harmonics of self—excited combustion instabilities[J].Combustion Science and Technology, 2017,189(7):1091-1106.
[2] MURUGESAN M,ZHU Y H,LI L K B.Complex network analysis of forced synchronization in a hydrodynamically self—excited jet[J].International Journal of Heat and Fluid Flow,2019,76: 14-25.
[3] MURAYAMA S,KINUGAWA H,TOKUDA I T,et al.Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex—network theory[J].Physical Review E,2018,97(2):022223.
[4] MURUGESAN M,SUJITH R I.Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability[J].Journal of Fluid Mechanics,2015,772: 225-245.
[5] 王金华,聂要辉,常敏,等.预混湍流火焰面褶皱结构网络拓扑研究[J].实验流体力学,2018,32(1):19-25.
[6] OKUNO Y,SMALL M,GOTODA H.Dynamics of self—excited thermoacoustic instability in a combustion system: Pseudo—periodic and high—dimensional nature[J].Chaos,2015,25(4):043107.
[7] GOTODA H,KINUGAWA H,TSUJIMOTO R,et al.Characterization of combustion dynamics,detection,and prevention of an unstable combustion state based on a complex—network theory[J].Physical Review Applied,2017,7(4):044027.
[8] MURUGESAN M,SUJITH R I.Detecting the onset of an impending thermoacoustic instability using complex networks[J].Journal of Propulsion and Power,2016,32(3):707-712.
[9] SINGH J,BELURVISHWANATH R,CHAUDHURI S,et al.Network structure of turbulent premixed flames[J].Chaos,2017,27(4):043107.
[10] GODAVARTHI V,UNNI V R,GOPALAKRISHNAN E A,et al.Recurrence networks to study dynamical transitions in a turbulent combustor[J].Chaos,2017,27(6):063113.
[11] MURAYAMA S,KAKU K,FUNATSU M,et al.Characterization of dynamic behavior of combustion noise and detection of blowout in a laboratory—scale gas—turbine model combustor[J].Proceedings of the Combustion Institute,2019,37(4):5271-5278.
[12] MILLER K,SISCO J,NUGENT N,et al.Combustion instability with a single—element swirl injector[J].Journal of Propulsion and Power,2007,23(5):1102-1112.
[13] WIERMAN M K,HALLUM W Z,ANDERSON W E.Stability characterization of a high pressure transverse combustor with discretely variable oxidizer post lengths[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston,Virginia: AIAA,2014.
[14] 王枫,李龙飞,张贵田.液氧煤油补燃发动机喷注器高频燃烧不稳定性的试验研究[J].宇航学报,2012,33(2):260-264.
[15] 王延涛,薛帅杰,杨岸龙,等.同轴喷嘴自发激励高频燃烧不稳定性试验研究[J].宇航学报,2015,36(12):1414-1420.
[16] 王迪,聂万胜,周思引,等.单喷嘴模型发动机纵向高频燃烧不稳定性实验分析[J].实验流体力学,2018,32(2):18-23.
[17] 张蒙正,张志涛,李鳌,等.高频燃烧不稳定性单喷注器燃烧室模拟实验的研究[J].实验技术与管理,2008,25(3):28-32.
[18] 杨向明,杨尚荣,杨岸龙,等.同轴离心式喷嘴热声不稳定性递归分析[J].宇航学报,2020,41(5):608-616.
[19] KANTZ H,SCHREIBER T.Nonlinear time series analysis[M].Cambridge: Cambridge University Press,2003.
[20] DONNER R V,ZOU Y,DONGES J F,et al.Recurrence networks—a novel paradigm for nonlinear time series analysis[J].New Journal of Physics,2010,12(3):033025.
[21] ZOU Y,DONNER R V,MARWAN N,et al.Complex network approaches to nonlinear time series analysis[J].Physics Reports,2019,787: 1-97.