|Table of Contents|

Several foreign rocket engine thrust vector measuring devices(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年04期
Page:
6-12
Research Field:
专论与综述
Publishing date:

Info

Title:
Several foreign rocket engine thrust vector measuring devices
Author(s):
LIU WanlongWANG DezhiLIU ShuoTIAN GuohuaZHU Haowei
(Beijing Institute of Aerospace Testing Technology,Beijing 100074, China)
Keywords:
rocket engine thrust vector measuring device
PACS:
V433
DOI:
-
Abstract:
In an ideal state,the rocket engine thrust line of action is coincided with the center axis of the engine.But due to the machining accuracy,the asymmetric flow of high-temperature and high-pressure gas in the nozzle,and the ablation of the nozzle throat,the actual engine thrust line is deviated from the theory thrust line.The rocket engine thrust is a space vector.During the operation of the rocket engine,the size,direction and the application point position of the thrust are constantly changing with time.The flight trajectory of the aircraft is significantly affected by the thrust vector.In view of the need of rocket engine thrust vector measurement,more research on rocket engine thrust vector measurement device had been conducted in the United States and other western countries.However,due to the reason of technical secrecy,the literatures of thrust vector measuring device are relatively few.In this paper,some overseas materials of rocket engine thrust vector measurement device were collected.The basic concept of the thrust vector were introduced in this paper.An overview of the thrust vector measuring device of rocket engine in the United States,Japan,Russia and South Korea was given in this paper,which can be provided as reference for domestic counterparts.

References:

[1] MELCHER J,ALLRED J.Liquid oxygen /liquid methane test results of the RS-18 lunar ascent engine at simulated altitude conditions at NASA white sands test facility[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.02 August 2009-05 August 2009,Denver,Colorado.Reston,Virginia:AIAA,2009.
[2] 王宏亮,晏卓,李志勋,等.发动机矢量推力测量与校准系统设计研究[J].火箭推进,2018,44(1):75-80. WANG H L,YAN Z,LI Z X,et al.Design research on thrust vector measurement and calibration system for rocket engine[J].Journal of Rocket Propulsion,2018,44(1):75-80.
[3] 任宗金,孙宝元,张军,等.轨/姿控火箭发动机推力矢量动态测试系统测量原理与动态性能[J].航空学报,2009,30(11):2037-2044.
[4] RUNYAN R,DEKEN L,MILLER J.Structural dynamics of a small rocket thrust stand[C]//28th Joint Propulsion Conference and Exhibit.06 July 1992—08 July 1992,Nashville,TN.Reston,Virginia:AIAA,1992.
[5] FIGUEROA C.Dynamic thrust testing for scale model engines with computer data acquisition[C]//38th Aerospace Sciences Meeting and Exhibit.10 January 2000—13 January 2000,Reno,NV.Reston,Virginia:AIAA,2000.
[6] 颜雄雄,耿卫国.小发动机推力矢量的测量[J].推进技术,2000,21(3):86-88.
[7] 王红艳,孙宝元,钱敏,等.基于有限元分析的推力矢量测试平台研究[J].压电与声光,2006,28(5):618-620.
[8] 孔炜,陈国光,王志军.应用载荷识别技术的火箭发动机推力偏心试验装置研究[J].弹箭与制导学报,1996,16(2):40-45.
[9] CUBBIN E A,ZIEMER J K,CHOUEIRI E Y,et al.Pulsed thrust measurements using laser interferometry[J].Reviewof Scientific Instruments,1997,68(6):2339-2346.
[10] 孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].北京:计量出版社,1985.
[11] 周长省,许宝庆,王政时,等.影响固体火箭发动机推力偏心特性的误差源研究[J].南京理工大学学报,1998,22(4):293.
[12] 韩丽丽,孙宝元,钱敏.新型压电三向钻削测力仪的设计与实验研究[J].压电与声光,2007,29(3):283-285.
[13] FOLCHIG A,SHELTON G L.Six degree of freedom force transducer for a manipulator system:US3948093[P].1976-04-06.
[14] WATSON P C,DRAKE S H.Pedestal wrist force sensors for industrial assembly[C]//Proc.of the 5th Int.Symp.Chicago:Industrial Robots,1975.
[15] SCHOTT J.Tactile sensor with decentralized signal conditioning[C]//The 9th IMEKO World Congress.Berlin:[s.n.],1982.
[16] 赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制[D].秦皇岛:燕山大学,2009.
[17] BRUSSEL H V,BELIEN H,THIELEMANS H.Force sensing for advanced robot control[C]//Proceedings of the 5th International Conference.Amsterdam,Neth:Robot Vision and Sensory Controls,1985.
[18] KROLL E.Decoupling load components and improving robot interfacing with an easy-to-use 6-axis wrist force sensor[C]// Theory of Machines and Mechanisms,Proceedings of the 7th World Congress,1986.
[19] SHIMANO B,ROTH B.On force sensing information and its use in controlling manipulators[M]//Information-Control Problemsin Manufacturing Technology.Amsterdam:Elsevier,1978:119-126.
[20] YOSHIKAWA T,MIYAZAKI T.A six-axis force sensor with three-dimensional cross-shape structure[C]//Proceedings,1989 International Conference on Robotics and Automation.Scottsdale,AZ:IEEE,1989.
[21] BAYO E,STUBBE J R.Six-axis force sensor evaluation and a new type of optimal frame truss design for robotic applications[J].Journal of Robotic Systems,1989,6(2):191-208.
[22] UCHIY A M,BAY O E.A systematic design procedure to minimize a performance index for robot force sensors[J].Journal of Dynamic Systems,Measurement and Control,1991,113(3):388-394.
[23] HATAMURA Y.A ring-shape 6-axis force sensor and its application[C]//Proceedings of the International Conference on Advanced Mechatronics.Tokyo:[s.n.],1989.
[25] KANEKO M.Twin-head six-axis force sensors[J].IEEE Transactions on Robotics and Automation,1996,12(1):146-154.
[26] 高飞.一种六分力传感器的数值计算与分析[D].武汉:武汉理工大学,2006.
[27] 鞠玉涛,周长省,王政时.火箭发动机六分力试验台系统误差分析研究[J].弹箭与制导学报,2005,25(4):63-65.
[28] 李兆民,李邦,周生国,等.固体火箭发动机推力偏心试验台的静态检测技术[J].测试技术学报,1994,8(2):211-216.
[29] 郑健,周长省,刘锐.固体火箭发动机六分力试验台应用综述[J].江苏航空,2010,30(S1):5-7.
[30] 来平安,田维平,余贞勇,等.固体火箭发动机推力线横移和偏斜模拟计算[J].固体火箭技术,1999,22(1):35-38.
[31] 张洪伟.时间序列分析法在六分力试验台上的应用[J].光学精密工程,1999,7(5):56-62.
[32] 赵立霞.水下六分力试验台测试系统设计及信号处理[D].南京:南京理工大学,2001.
[33] 许辉.火箭发动机水下六分力试验测试系统软硬件设计[D].南京:南京理工大学,2002.
[34] 王颐,雷亚琴.固体火箭发动机多分力测量方法简介[J].固体火箭技术,2000,23(3):70-74.
[35] 杜长宝,黄莉.固体火箭发动机推力偏心分析与试验研究[J].南京理工大学学报,2006,30(5):550-553.
[36] 李兆民,李邦,周生国,等.固体火箭发动机推力偏心试验台的静态检测技术[J].测试技术学报,1994,8(2):211-216.
[37] 邓海涛,袁玉华.固体火箭发动机多分量测力系统研究[C]//全国力学中的电测技术及测控系统学术会议论文集.[S.l.]:全国力学学会,1996.
[38] 胡旭晓,孙宝元,钱敏,等.发动机推力矢量测试系统的设计[J].传感器技术,2005,24(11):59-61.
[39] 高长银,孙宝元.火箭发动机推力矢量测量平台的原理与结构[J].压电与声光,2010,32(3):480-482.
[40] 胡旭晓.火箭发动机推力矢量测试系统的研制[D].大连:大连理工大学,2006.
[41] 王红艳.火箭发动机推力矢量测试系统测力平台的研制[D].大连:大连理工大学,2006.
[42] 李海涛.火箭发动机推力矢量测量理论、方法与自动测试技术研究[D].长沙:国防科学技术大学,2005.
[43] 耿卫国,朱子环.轨姿控发动机动态推力与推力矢量测试系统研制[J].宇航计测技术,2015,35(6):28-32.
[44] JOYEL M K,GWYNN A S,KURT H L.Advanced nozzle test facility at NASA Glenn Research Center.Advanced nozzle test facility at NASA Glenn Research Center[R].AIAA2002-3245.
[45] WONG K C.Derivation of the data reduction equations for the calibration of the six-component thrust stand in the CE-22 advanced nozzle test facility[R].NASA/TM-2003-212326.
[46] AARON A H,JONATHAN W N.A Hexapod-based thrust balance[R].AIAA2009-795.
[47] 侯雨雷,曾达幸,姚建涛,等.超静定并联式六维力传感器动力学[J].光学精密工程,2009,17(7):1594-1601.
[48] 张新.关于固体火箭多分力试车台的动特性研究(横推力测试系统)[J].固体火箭技术,1978,1(3):85-104.
[49] ZAVALNYUK A G,KOLOTILIN V L.Stand for determining the components of the thrust of a rocket engine:Ru 2135976 C1[P],1999-08-27.
[50] LEE Y,SONG M,CHANG H,et al.Application of back-step coandaflap for the supersonic co-flowing fluidic thrust vector control[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.San Jose,CA.Reston,Virginia:AIAA,2013.

Memo

Memo:
-
Last Update: 1900-01-01