|Table of Contents|

Intelligent detection method of liquid rocket engine health state(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年04期
Page:
52-58
Research Field:
研究与设计
Publishing date:

Info

Title:
Intelligent detection method of liquid rocket engine health state
Author(s):
WANG Jun1LV Haixin2CHEN Jinglong2LIU Zijun1YUAN Junshe1
(1.Xian Aerospace Propulsion Institute,Xian 710100,China 2.State Key Laboratory of Manufacturing and Systems Engineering,Xian Jiaotong University,Xian 710049,China)
Keywords:
health state detection liquid rocket engine multi-sensor data convolutional autoencoder unsupervised learning
PACS:
V434,TP391
DOI:
-
Abstract:
The health state detection technology of liquid rocket engine is very important to improve the safety and reliability of rockets,which has important academic research and application value.The current research methods are mostly based on feature extraction and expert experience,while the research on intelligent detection technology needs to be improved.In this paper,Multi-component Two-stage Fusion Convolutional Denoising Auto-Encoder(MTAE)for intelligent detection of liquid rocket engine health state was proposed.First,unsupervised feature extraction and reconstruction of multi-sensor monitoring data were performed.After completing the learning of training set with the MTAE,the center of health and the monitoring threshold were determined based on the hidden layer features and reconstruction errors.Then,the state of each group of the testing set would be identified.In addition,the health state of each component could be further determined by calculating the loss of each component.Finally,the proposed method was verified by the data collected from the static firing test process.The method achieves an accuracy of 88.9% on the test set and could monitor the health and degradation trends of the whole engine and each component.The results show the effectiveness and application potential of the proposed method.

References:

[1] 张楠,孙慧娟.低温液体火箭发动机重复使用技术分析[J].火箭推进,2020,46(6):1-12. ZHANGN,SUN H J.Analysis on the reusable cryogenic liquid rocket engine technology[J].Journal of Rocket Propulsion,2020,46(6):1-12.
[2] 孙百红,田川.基于特征频段RMS值的发动机故障实时监测方法[J].火箭推进,2019,45(4):74-78. SUN B H,TIAN C.The fault real-time monitoring method for engine based on RMS value of characteristic frequency band[J].Journal of Rocket Propulsion,2019,45(4):74-78.
[3] ZHU X B,CHENG Y Q,WU J J,et al.Steady-state process fault detection for liquid rocket engines based on convolutional auto-encoder and one-class support vector machine[J].IEEE Access,2019,8:3144-3158.
[4] 吴玉洋,李宁宁,薛薇,等.改进PSO优化LSSVM的液体火箭发动机故障检测[J].计算机仿真,2020,37(5):49-54.
[5] 刘付成.人工智能在航天器控制中的应用[J].飞控与探测,2018,1(1):16-25.
[6] 周磊,朱子环,耿卫国,等.美国液体火箭发动机试验中健康管理技术研究进展[J].导弹与航天运载技术,2013(5):20-25.
[7] 李洪.智慧火箭发展路线思考[J].宇航总体技术,2017,1(1):1-7.
[8] 吴建军,程玉强,崔星.液体火箭发动机健康监控技术研究现状[J].上海航天,2020,37(1):1-10.
[9] 宋征宇.运载火箭远程故障诊断技术综述[J].宇航学报,2016,37(2):135-144.
[10] IVERSON D L,MARTIN R,SCHWABACHER M,et al.General purpose data-driven monitoring for space operations[J].Journal of Aerospace Computing,Information,and Communication,2012,9(2):26-44.
[11] 赵汝岩,崔海斌,单崇喆.基于监测信息的固体火箭发动机健康状态评估技术[J].固体火箭技术,2019,42(3):384-388.
[12] 李雷,谢立,张永杰,等.数据挖掘在运载火箭智能测试中的应用[J].航空学报,2018,39(S1):722203.
[13] 孙成志,闫晓东.基于神经网络和证据理论的火箭发动机故障诊断[J].宇航总体技术,2020,4(4):20-30. SUN C Z,YAN X D.Fault diagnosis of rocket engine based on neural network and evidence theory[J].Astronautical Systems Engineering Technology,2020,4(4):20-30.
[14] 张晨曦,唐曙,唐珂.迁移学习下的火箭发动机参数异常检测策略[J].计算机应用,2020,40(9):2774-2780.
[15] 谭永华,李健,贺元军,等.一种针对液体火箭发动机可靠性的双线评估方法[J].推进技术,2021,42(2):421-430.
[16] DU B,XIONG W,WU J,et al.Stacked convolutional denoising auto-encoders for feature representation[J].IEEE Transactions on Cybernetics,2017,47(4):1017-1027.
[17] 张立智,井陆阳,徐卫晓,等.基于卷积降噪自编码器和CNN的滚动轴承故障诊断[J].组合机床与自动化加工技术,2019(6):58-62.
[18] ZONG B,SONG Q.Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//ICLR 2018.Pullman:Washington State University,2018.
[19] 何涛,黄敏超,胡小平,等.某火箭发动机故障检测及诊断算法设计分析[J].南京航空航天大学学报,2019,51(S1):50-55.
[20] 邓晨,薛薇,郑孟伟,等.基于改进ARMA模型的火箭发动机稳态工况过程实时故障诊断方法研究[J].计算机测量与控制,2020,28(2):33-38.

Memo

Memo:
-
Last Update: 1900-01-01