|Table of Contents|

The catalytic decomposition mechanism of HAN on Ir(100)surface(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年04期
Page:
79-86
Research Field:
研究与设计
Publishing date:

Info

Title:
The catalytic decomposition mechanism of HAN on Ir(100)surface
Author(s):
HU Xu1LIU Chuan2WANG Haifeng1HUANG Yongmin1
(1.School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China 2.Shanghai Institute of Space Propulsion,Shanghai 201112,China)
Keywords:
monopropellant liquid rocket engine HAN-based propellant bimolecular association density functional theory catalytic decomposition
PACS:
V511
DOI:
-
Abstract:
The catalytic decomposition mechanism of hydroxylamine nitrate(HAN)bimolecular association structure on Ir(100)surface was studied to reveal the catalytic decomposition processing of HAN-based propellant in momopropellant liquid rocket motor.The Ab Initio method was adopted to obtain the molecular structure of HAN and its bimolecular association.The catalytic decomposition process was calculated by density functional theory method.The calculation results indicate that the HAN molecule is formed by double point hydrogen bonding and the association structure is mainly formed by hydrogen bonds between molecules.Three adsorption structures of HAN bimolecular association on Ir(100)surface was found.The adsorption structure is stable under the cooperation of O and Ir bonds,and the adsorption energies are -1.64 eV and -2.15 eV,respectively.The adsorption energy under the hydrogen bonded adsorption structure is only -1.12 eV.The decomposition reactions of HAN bimolecular association structure on the surface are all exothermic.The decomposition of two HAN molecules in bimolecular association happens under different order.With different adsorption structure,the products of the decomposition are different.In the hydroxylamine adsorption structure,the decomposition products are HAN,NO-3,OH and NH3,while in the nitrate adsorption structure,the decomposition products are HAN,NH3OH+,O and NO2.The decomposition energy barriers of the two adsorption structures are 12.68 kcal/mol and 11.30 kcal/mol,respectively.These two reactions are all available during the catalytic decomposition processing.

References:

[1] 周汉申.单组元液体火箭发动机设计与研究[M].北京:中国宇航出版社,2009.
[2] 陈锐达,刘昌国,关亮.国外单组元变推力发动机应用与关键技术[J].火箭推进,2020,46(2):1-8. CHENR D,LIU C G,GUAN L.Application and key technologies of foreign monopropellant throttling engine[J].Journal of Rocket Propulsion,2020,46(2):1-8.
[3] SUN D C,LIU J,XIANG W B.Numerical simulation of the transient process of monopropellant rocket engines[J].Aerospace Science and Technology,2020,103:105921.
[4] COURTH?UX L,AMARIEI D,ROSSIGNOL S,et al.Thermal and catalytic decomposition of HNF and HAN liquid ionic as propellants[J].Applied Catalysis B:Environmental,2006,62(3/4):217-225.
[5] OOMMEN C,RAJARAMAN S,CHANDRU R A,et al.Catalytic decomposition of hydroxylammonium nitrate monopropellant[C]//Proceedings of International Conference on Chemistry and hemical Process.[S.l.]:ICCCP,2011.
[6] FAETH G M,KARHAN B L,YANYECIC G A.The ignition and combustion of monopropellant droplets [J].European Review of History,2013,20(5):923-924.
[7] 史良煜.HAN基单组元液体推进剂安全特性研究[D].南京:南京理工大学,2016.
[8] BANERJEE S,SHETTY S A,GOWRAV M N,et al.Adsorption and decomposition of monopropellant molecule HAN on Pd(100)and Ir(100)surfaces:a DFT study[J].Surface Science,2016,653:1-10.
[9] 鲍世国,公绪滨,陈艺,等.一种HAN基单元推进剂及催化分解性能研究[J].火箭推进,2018,44(2):39-45. BAO S G,GONG X B,CHEN Y,et al.Investigation of a novel HAN-based monopropellant and its catalytic decomposition performance[J].Journal of Rocket Propulsion,2018,44(2):39-45.
[10] 刘海娃,胡承云,叶胜.HAN基无毒单组元发动机热控研究[J].火箭推进,2020,46(4):38-45. LIU H W,HU C Y,YE S.Study on thermal control of HAN-based green monopropellant thruster[J].Journal of Rocket Propulsion,2020,46(4):38-45.
[11] REN X G,WANG A Q,WANG X D,et al.Catalytic decomposition of HAN-based monopropellant at room temperature over Ir/SiO2 catalyst[C]//Proc. 3rd International Conference on Green Propellants for Space Propulsion. Poitiers:[s.n.],2006.
[12] RENX G,LI M H,WANG A Q,et al.Catalytic decomposition of hydroxyl ammonium nitrate at room temperature[J].Chinese Journal of Catalysis,2007,28(1):1-2.
[13] SCHMIDT E W,GAVIN D F.Catalytic decomposition of hydroxylammonium nitrate-based monopropellants:US5485722[P].1996.
[14] BERG S P,ROVEY J L.Decomposition of monopropellant blends of hydroxylammonium nitrate and imidazole-based ionic liquid fuels[J].Journal of Propulsion and Power,2012,29(1):125-135.
[15] CHANG Y.Combustion behavior of HAN-based liquid propellants [D].Pennsylvania State:The Pennsylvania State University,2002.
[16] 吴珊珊,黄永民.硝酸羟胺基液体推进剂催化分解产物的气质联用分析[C]//中国化学会第八届全国化学推进剂学术会议,[S.l.]:中国化学会,2017.
[17] 金东洙.HAN基单组元发动机仿真模型研究[D].大连:大连理工大学,2018.
[18] SUN D C,XIANG W B.Simplified numerical simulation model for hydroxyl ammonium nitrate-based monopropellant rocket engines[J].Aerospace Science and Technology,2019,95:105474.
[19] CURTISS L A,REDFERN P C,RAGHAVACHARI K.Gaussian-4 theory[J].The Journal of Chemical Physics,2007,126(8):084108.
[20] FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 09, Revision Bol[M]. Wallingford CT:Gaussian, Inc,2010.
[21] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.
[22] KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method [J].Physical Review B,1999,59(3):1758- 1775.
[23] HENKELMAN G,UBERUAGA B P,J?SSON H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J].The Journal of Chemical Physics,2000,113(22):9901-9904.
[24] KRESSE G,FURTHM?LER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,Condensed Matter,1996,54(16):11169-11186.

Memo

Memo:
-
Last Update: 1900-01-01