|Table of Contents|

BP neural network applied in fault detection of rocket pressurized delivery system(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年05期
Page:
85-91
Research Field:
测控与试验
Publishing date:

Info

Title:
BP neural network applied in fault detection of rocket pressurized delivery system
Author(s):
ZHANG WeixingLI JianminHOU WenWANG GaoLUO YueXUE Zhenyu
(School of Information and Communication,North University of China,Taiyuan 030051,China)
Keywords:
liquid rocket telemetry parameter BP neural network fault detection
PACS:
V434,TP277
DOI:
-
Abstract:
The pressurized delivery system is the core system of rocket to generate thrust,and its working reliability is directly related to the safety of launch vehicle. Taking the third stage of a certain type of launch vehicle as the fault detection object,the telemetry data is sampled and preprocessed to reduce the data scale and improve the fault detection efficiency.By simulating common faults and occasional faults to expand the fault data scale,the fault data and normal data are balanced,and the rocket working conditions are distinguished by adding normalized time series. The processed telemetry data is used to train BP neural network.The fault detection results show that BP neural network can effectively detect the fault of pressurized delivery system by using therocket telemetry data,and the false alarm rate of normal data and false alarm rate of fault data are both low,and it can meet the real-time fault detection requirements.

References:

[1] 廖少英.液体火箭推进增压输送系统[M].北京:国防工业出版社,2007. [2] SCHWABACHER M,WATERMAN R.Pre-launch diagnostics for launch vehicles[C]//2008 IEEE Aerospace Conference.Big Sky,MT,USA:IEEE,2008:1-8. [3] RODNEY A.Evaluation of anomaly detection capability for ground-based pre-launch shuttle operations[M]//Aerospace Technologies Advancements.[S.l.]:In Tech,2010. [4] FERRELL B,BROWN B,HALL D,et al.Usage of fault detection isolation and recovery(FDIR)in CxP launch operations[C]//SpaceOps 2010 Conference.Huntsville,Alabama.Reston,Virigina:AIAA,2010. [5] SCHWABACHER M,MARTIN R,WATERMAN R,et al.Ares I-X ground diagnostic prototype[C]// Aerospace Conference 2010.Atlanta,Georgia.Reston,Virginia:AIAA,2010. [6] 李艳军.新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D].长沙:国防科学技术大学,2014. [7] 陈海峰,赵政社,张少博.基于振动检测的发动机故障诊断算法研究[J].火箭推进,2012,38(6):62-69.CHEN H F,ZHAO Z S,ZHANG S B.Research on liquid rocket engine fault diagnosisAlgorithm according to vibration detection[J].Journal of Rocket Propulsion,2012,38(6):62-69. [8] 党锋刚,马红宇,李春红,等.液氧煤油发动机稳态故障仿真分析[J].火箭推进,2012,38(2):27-31.DANG F G,MA H Y,LI C H,et al.Steady-state fault simulation and effect analysis of LOX/kerosene rocket engine[J].Journal of Rocket Propulsion,2012,38(2):27-31. [9] 孙迪钢.基于深度学习的轨道转辙机故障检测系统[D].广州:华南理工大学,2018. [10] 司佳.面向工业大数据的智能故障诊断方法研究[D].济南:山东大学,2018. [11] 吴建军,程玉强,崔星.液体火箭发动机健康监控技术研究现状[J].上海航天(中英文),2020,37(1):1-10. [12] 李京浩.基于数据挖掘技术的液体火箭发动机故障检测和诊断研究[D].长沙:国防科学技术大学,2007. [13] 张翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障数据聚类分析研究[J].火箭推进,2015,41(2):118-122.ZHANG X,XU H P,AN X Y,et al.Clustering analysis for fault data in steady process of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(2):118-122. [14] 耿辉,张翔,张素明,等.一种基于聚类分析的液体火箭发动机稳态过程故障诊断方法[J].火箭推进,2014,40(5):86-91.GENG H,ZHANG X,ZHANG S M,et al.Cluster analysis based diagnosis method for fault in steady process of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2014,40(5):86-91. [15] 李宁宁.粒子群算法研究及其在航天发动机健康管理中的应用[D].天津:天津理工大学,2019. [16] 谢廷峰,刘洪刚,黄强,等.液体火箭发动机地面试车实时故障检测参数的选取[J].航天控制,2008,26(6):77-81. [17] 黄敏超,冯心,张育林.应用神经网络识别液体火箭发动机的故障模式[J].推进技术,1993,14(6):32-38. [18] 黄敏超,张育林,陈启智.动态神经网络在液体火箭发动机故障检测与分离中的应用[J].航空动力学报,1996,11(2):149-152. [19] WHEELER K,DHAWAN A,MEYER C.SSME sensor modeling using radial basis function neural networks[C]//30th Joint Propulsion Conference and Exhibit.Indianapolis,IN.Reston,Virginia:AIAA,1994.

Memo

Memo:
-
Last Update: 1900-01-01