[1] THOMAS S R,WALKER J F,PITTMAN J L. Overview of the turbine based combined cycle discipline[EB/OL].https://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071125883.html,2009.
[2] HAID D A,GAMBLE E J. Integrated tutbine-based combined cycle dynamic simulation model[C]//58th JANNAF(JPM / CS / APS / EPSS / PHHS)Propulsion Meeting Arlington.[S.l.]:JANNAF,2011.
[3] BOWCUTT K,SAUNDERS D,EDWARDS J. TBCC dual-inlet mode transition[Z].National Center for Hypersonic Combined Cycle Propulsion,2011.
[4] SIEBENHAAR A,BOGAR T. Integration and vehicle performance assessment of the aerojet “TriJet” combined-cycle engine[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virginia:AIAA,2009.
[5] ZHENG J L,CHANG J T,YANG S B,et al.Trajectory optimization for a TBCC-powered supersonic vehicle with transition thrust pinch[J].Aerospace Science and Technology,2019,84:214-222.
[6] 汤华. 高马赫数涡轮发动机技术研究[J].战术导弹技术,2016(3):71-76.
[7] 张彦军,于学明,郭帅帆. 可回收旁路放气技术在高速涡轮发动机上的应用分析[J].科技创新与应用,2015(20):17-18.
[8] 徐思远,朱之丽,刘振德,等. 革新涡轮加速器模态转换特性研究[J].推进技术,2020,41(3):516-526.
[9] LEE J H,WINSLOW R,BUEHRLE R J. The GE-NASA RTA hyperburner design and development[EB/OL].https://www.semanticscholar.org/paper/The-GE-NASA-RTA-Hyperburner-Design-and-Development-Lee-Winslow/9a29f6f9d3b4cc4495fe8c41e13c4611e6d918c6,2005.
[10] PAUL A B,NANCY B M. Highspeed turbines:development of a turbine accelerator(RTA)for space access[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston,Virginia:AIAA,2003.
[11] THOMAS S R. TBCC discipline overview: hypersonics project[EB/OL].https://www.semanticscholar.org/paper/Tbcc-Discipline-Overview.-Hypersonics-Project-Thomas/46b48ff29c6cc68e77b3547e5dac2701f9e29e15,2013.
[12] MCNELIS N,BARTOLOTTA P. Revolutionary turbine accelerator(RTA)demonstrator[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston,Virginia:AIAA,2005.
[13] CELESTINA M L,SUDER K L,KULKARNI S. Results of an advanced fan stage over a wide operating range of speed and bypass ratio:part II—comparison of CFD and experimental results[C]// ASME Turbo Expo 2010:Power for Land,Sea,and Air.New York:ASME,2010.
[14] 陈敏. 涡轮/冲压组合动力技术发展研究[EB/OL].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=ZGHU201404001007,2014.
[15] FUJIMURA T,ISHII K,TAKAGI S,et al.HYPR90-Tturbo engine research for HST combined cycle engine[C]// Aerospace Technology Conference and Exposition.Warrendale,PA:SAE International,1995.
[16] 王占学,张明阳,张晓博,等. 变循环涡扇冲压组合发动机发展现状及关键技术分析[J].推进技术,2020,41(9):1921-1934.
[17] BALEPIN V,LISTON G. The steam Jet-Mach 6+ turbine engine with inlet air conditioning[C]// 37th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2001.
[18] YOUNG D,OLDS J. Responsive access small cargo affordable launch(RASCAL)independant performance evaluation[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston,Virginia:AIAA,2005.
[19] CARTER P,BALEPIN V. Mass injection and precompressor cooling engines analyses[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2002.
[20] 李成,蔡元虎,屠秋野,等. 射流预冷却吸气式涡轮火箭发动机性能模拟[J].推进技术,2011,32(1):1-4.
[21] CARTER P H,BALEPIN V,SPATH T. MIPCC technology development[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston,Virginia:AIAA,2003.
[22] 李艳军,常鸿雯,薛洪科,等. 射流装置降温性能评估及敏感性分析[J].航空发动机,2017,43(1):85-90.
[23] 罗佳茂. TBCC发动机涡轮进气道喷水冷却特性数值研究[C]//中国航天第三专业信息网. S03吸气式与组合推进技术.[S.l.]:中国航天第三专业信息网,2018.
[24] 杨昊. 射流预冷发动机压缩部件两相流动数值模拟[D].哈尔滨:哈尔滨工程大学,2017.
[25] 林阿强. 高马赫数下射流预压缩冷却的数值研究[C]//中国航天第三专业信息网会议论文集.[S.l.]:中国航天第三专业信息网,2017.
[26] KOBAYASHI H,TAGUCHI H,KOJIMA T,et al.Performance analysis of Mach 5 hypersonic turbojet developed in JAXA[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virginia:AIAA,2012.
[27] BECHTEL R S,OLDS J R. T-BEAT:a conceptual design tool for turbine-based propulsion system analysis[EB/OL].https://xueshu.baidu.com/usercenter/paper/show? paperid=a4115a5c40f84e12a3bd0eee43fa78ad,2001.
[28] 邹正平,王一帆,额日其太,等. 高超声速强预冷航空发动机技术研究进展[J].航空发动机,2021,47(4):8-21.
[29] 周兵,梁新刚.基于煤油热沉的进气预冷涡轮风扇发动机热力性能分析[EB/OL].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=HTDZ201708010031,2017.
[30] HARADA K,TANATSUGU N,SATO T. Development study of a precooler for the air-turboramjet expander-cycle engine[J].Journal of Propulsion and Power,2001,17(6):1233-1238.
[31] FEAST S. The synergetic air-breathing rocket engine(SABRE)development status update[C]//71st International Astronautical Congress. [S.l.]:International Astronautical Federation,2020.
[32] 之兼. Hermeus公司首次利用新的高超声速测试设施完成发动机测试[N].中国航空报,2021-09-17(8).
[33] BULMANM,SIEBENHAAR A. Combined cycle propulsion:aerojet innovations for practical hypersonic vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virigina:AIAA,2011.
[34] 韦宝禧,凌文辉,冮强,等. TRRE发动机关键技术分析及推进性能探索研究[J].推进技术,2017,38(2):298-305.
[35] WEI B X,LING W H,LUO F T,et al.Propulsion performance research and status of TRRE engine experiment[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston,Virginia:AIAA,2017.
[36] MAMPLATA C,TANG M. Two steps instead of a giant leap-an approach for air breathing hypersonic flight[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virginia:AIAA,2011.