|Table of Contents|

Performance analysis of rotating detonative airbreathing combined cycle engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年06期
Page:
86-92
Research Field:
专刊
Publishing date:

Info

Title:
Performance analysis of rotating detonative airbreathing combined cycle engine
Author(s):
JI Zifei1LI Tianqi2ZHANG Huiqiang2
(1. Shenyang Engine Research Institute,Aero Engine Corporation of China,Shenyang 110015,China 2. School of Aerospace Engineering,Tsinghua University,Beijing 100084,China)
Keywords:
rotating detonation detonative propulsion airbreathing combined cycle engine mode transition
PACS:
V439
DOI:
-
Abstract:
An over-under configuration of the rotating detonative airbreathing combined cycle engine is presented in this study. Two propulsion units are merged to achieve three different operating modes,which provides a favorable propulsion choice for advanced full range and trans-aerosphere hypersonic vehicles. Based on the steady state characteristics of turbine and ramjet units,a mode transition strategy with equal thrust and equal mass flowrate is proposed for the combined cycle engine,which further reveals the mode transition strategy and overall performance of the transition mode. The results indicate that the rotating detonation ramjet engine shows potential for improving the overall performance in low flight Mach number regime,and the rotating detonation turbojet engine shows potential for improving the overall performance in high flight Mach number regime. The higher the initial Mach number of mode transition,the lower the specific thrust and the higher the specific impulse during the transition mode.

References:

[1] SNYDER L,ESCHER D,DEFRANCESCO R,et al.Turbine based combination cycle(TBCC)propulsion subsystem integration[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2004.
[2] DISSEL A F,KOTHARI A P,LEWIS M J. Investigation of two-stage-to-orbit airbreathing launch-vehicle configurations[J].Journal of Spacecraft and Rockets,2006,43(3):568-574.
[3] GUO S,XU J L,MO J W,et al.Fluid-structure interaction study of the splitter plate in a TBCC exhaust system during mode transition phase[J].Acta Astronautica,2015,112:126-139.
[4] 计自飞,王兵,张会强. 组合循环推进系统燃料消耗模型及优化分析[J].清华大学学报(自然科学版),2017,57(5):516-520.
[5] 王兵,计自飞. 航空宇航推进理论[M].北京:科学出版社,2018.
[6] 邹正平,刘火星,唐海龙,等. 高超声速航空发动机强预冷技术研究[J].航空学报,2015,36(8):2544-2562.
[7] 朱岩,马元,张蒙正. 预冷空气涡轮火箭发动机氦循环系统的参数特性[J].航空动力学报,2018,33(8):2016-2024.
[8] 李敬,赵巍,赵伟,等. 换热器预冷的空气涡轮火箭性能分析研究[J].工程热物理学报,2015,36(2):302-307.
[9] 韦宝禧,凌文辉,冮强,等. TRRE发动机关键技术分析及推进性能探索研究[J].推进技术,2017,38(2):298-305.
[10] ZHANG J Q,WANG Z G,LI Q L. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode[J].Acta Astronautica,2017,138:394-406.
[11] LU F K,BRAUN E M. Rotating detonation wave propulsion:Experimental challenges,modeling,and engine concepts[J].Journal of Propulsion and Power,2014,30(5):1125-1142.
[12] JI Z F,ZHANG H Q,WANG B. Performance analysis of dual-duct rotating detonation aero-turbine engine[J].Aerospace Science and Technology,2019,92:806-819.
[13] 计自飞,张会强,谢峤峰,等. 连续旋转爆震涡轮发动机热力过程与性能分析[J].清华大学学报(自然科学版),2018,58(10):899-905.
[14] SICHEL M,FOSTER J C. The ground impulse generated by a plane fuel-air explosion with side relief[J].Acta Astronautica,1979,6(3/4):243-256.
[15] YI T H,LOU J,TURANGAN C,et al.Propulsive performance of a continuously rotating detonation engine[J].Journal of Propulsion and Power,2011,27(1):171-181.
[16] BRAUN E M,LU F K,WILSON D R,et al.Airbreathing rotating detonation wave engine cycle analysis[J].Aerospace Science and Technology,2013,27(1):201-208.
[17] SCHWER D,KAILASANATH K. Numerical investigation of the physics of rotating-detonation-engines[J].Proceedings of the Combustion Institute,2011,33(2):2195-2202.
[18] SCHWER D,KAILASANATH K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[Z].Proceedings of the Combustion Institute,2013.

Memo

Memo:
-
Last Update: 1900-01-01