[1] PRAGER W.A new method of analyzing stresses and strains in work-hardening plastic solids[J].Journal of Applied Mechanics,1956,23(4):493-496.
[2] FREDERICK C O,ARMSTRONG P J.A mathematical representation of the multiaxial Bauschinger effect[J].Materials at High Temperatures,2007,24(1):1-26.
[3] CHABOCHE J L.A review of some plasticity and viscoplasticity constitutive theories[J].International Journal of Plasticity,2008,24(10):1642-1693.
[4] CHABOCHE J L,KANOUT?P,AZZOUZ F.Cyclic inelastic constitutive equations and their impact on the fatigue life predictions[J].International Journal of Plasticity,2012,35:44-66.
[5] AGIUS D,KAJTAZ M,KOUROUSIS K I,et al.Sensitivity and optimisation of the Chaboche plasticity model parameters in strain-life fatigue predictions[J].Materials & Design,2017,118:107-121.
[6] BADNAVA H,PEZESHKI S M,NEJAD K F,et al.Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method[J].Journal of Mechanical Science & Technology,2012,26(10):3067-3072.
[7] CHABOCHE J L,CORDIER G.Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel[EB/OL].https://www.researchgate.net/publication/310478904_Modelization_of_the_strain_memory_effect_on_the_cyclic_hardening_of_316_stainless_steel,1979.
[8] LIU S J,LIANG G Z.Optimization of Chaboche kinematic hardening parameters by using an algebraic method based on integral equations[J].Journal of Mechanics of Materials and Structures,2017,12(4):439-455.
[9] PHAN V T,MESSNER M C,SHAM T L.A unified engineering inelastic model for 316H stainless steel[C]//ASME 2019 Pressure Vessels & Piping Conference.New York:ASME,2019.
[10] LIU S J,LIANG G Z,YANG Y C.A strategy to fast determine Chaboche elasto-plastic model parameters by considering ratcheting[J].International Journal of Pressure Vessels and Piping,2019,172:251-260.
[11] LI X,HOLDSWORTH S R,MAZZA E,et al.The investigation of primary creep regeneration for 10Cr martensitic steel:unified constitutive modelling[J].International Journal of Mechanical Sciences,2021,190:106044.
[12] ZHOU J B,BARRETT R A,LEEN S B.A physically-based method for predicting high temperature fatigue crack initiation in P91 welded steel[J].International Journal of Fatigue,2021,153:106480.
[13] MEYER K A,MENZEL A.A distortional hardening model for finite plasticity[J].International Journal of Solids and Structures,2021,232:111055.
[14] CHABOCHE J L.Time-independent constitutive theories for cyclic plasticity[J].International Journal of Plasticity,1986,2(2):149-188.
[15] CHABOCHE J L.On some modifications of kinematic hardening to improve the description of ratchetting effects[J].International Journal of Plasticity,1991,7(7):661-678.
[16] SIVAPRASAD S,PAUL S K,DAS A,et al.Cyclic plastic behaviour of primary heat transport piping materials:influence of loading schemes on hysteresis loop[J].Materials Science and Engineering:A,2010,527(26):6858-6869.
[17] PAUL S K,SIVAPRASAD S,DHAR S,et al.Key issues in cyclic plastic deformation:experimentation[J].Mechanics of Materials,2011,43(11):705-720.
[18] DEY R,TARAFDER S,SIVAPRASAD S.Influence of phase transformation due to temperature on cyclic plastic deformation in 304LN stainless steel[J].International Journal of Fatigue,2016,90:148-157.
[19] OKOROKOV V,GORASH Y,MACKENZIE D,et al.New formulation of nonlinear kinematic hardening model,Part I:A Dirac delta function approach[J].International Journal of Plasticity,2019,122:89-114.
[20] ABDEL-KARIM M.An evaluation for several kinematic hardening rules on prediction of multiaxial stress-controlled ratchetting[J].International Journal of Plasticity,2010,26(5):711-730.