|Table of Contents|

Measurement method of nozzle atomization angle based on image processing(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年03期
Page:
63-70
Research Field:
研究与设计
Publishing date:

Info

Title:
Measurement method of nozzle atomization angle based on image processing
Author(s):
QIAN Chen1 GAO Xinni2 HU Baolin2 PENG Zhongwei2 YAN Hua1 YANG Bin1
(1.Shanghai Key Laboratory of Multiphase Flow and HeatTransfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2.Xian Aerospace Propulsion Institute, Xian 710100, China)
Keywords:
atomization angle deflection angle image processing threshold segmentation edge recognition measurement uncertainty
PACS:
V238
DOI:
-
Abstract:
Aiming at the measurement of nozzle atomization angle, the measurement method of nozzle atomization angle based on image processing is studied.A telecentric lens optical imaging measurement system is designed and built,and the image processing algorithm based on image gray threshold segmentation, edge recognition and angle analysis is studied.The atomization angle and deflection angle are obtained by processing the spray image.In order to verify the measurement accuracy of the system, the standard angle block is used for measurement.The maximum relative error of angle measurement is 1.01 and the measurement uncertainty is better than 0.10°.On this basis, this optical imaging measurement system is applied to the atomization angle test of A, B and C three types of nozzles.The results show that the method can effectively obtain clear images, and the atomization angle and deflection angle can be obtained by threshold segmentation and edge recognition algorithm.The measurement uncertainty of atomization angle for three typical single nozzles A, B and C is 0.806°, 0.279° and 0.624°,and the measurement uncertainty of deflection angle is 0.207°, 0.402° and 0.620°,respectively.The average measurement uncertainty of atomization angle for A, B and C nozzles is 0.659°, 0.427° and 1.291°, and the average measurement uncertainty of deflection angle is 0.389°, 0.231° and 0.487°, respectively.Therefore, the test method of nozzle atomization angle based on image processing can provide intuitive and effective basis for evaluating nozzle atomization performance.

References:

[1] 周帅,林磊,杜大华,等.液体火箭发动机对接焊管道振动疲劳性能研究[J].火箭推进,2021,47(3):90-97.
ZHOU S,LIN L,DU D H,et al.Study on vibration fatigue of butt welded pipe of liquid rocket engine[J].Journal of Rocket Propulsion,2021,47(3):90-97.
[2] 谢福寿,杜飞平,王晓峰,等.液氧煤油补燃发动机泵间管路高温富氧燃气掺混冷凝特性数值研究[J].推进技术,2021,42(7):1544-1552.
[3] 孙迎霞,王浩,陈剑,等.液体推进剂的新型加注方法[J].火箭推进,2019,45(6):60-65.
SUN Y X,WANG H,CHEN J,et al.A new injection method for liquid propellant[J].Journal of Rocket Propulsion,2019,45(6):60-65.
[4] 田畅.X型旋流压力喷嘴雾化参数及降尘效率预测模型[D].湘潭:湖南科技大学,2019.
[5] 刘祺,夏津,黄忠,等.航空发动机离心式喷嘴宏观喷雾特性[J].推进技术,2021,42(2):362-371.
[6] 施智雄,潘科玮,平力,等.喷嘴雾化参数轨迹图像法测量实验研究[J].化工学报,2020,71(8):3527-3534.
[7] 杨国华,王凯,雷凡培,等.螺旋形实心锥喷嘴雾化特性试验研究[J].热能动力工程,2021,36(3):77-86.
[8] 雒晨辉,黄靖龙,孙世彪,等.司马煤业有限公司掘进机外喷雾喷嘴雾化特性及降尘性能研究[J].采矿技术,2022,22(1):166-170.
[9] 周进华.小油量气泡雾化喷嘴的试验研究[D].武汉:华中科技大学,2011.
[10] 马牙川.基于FPGA的智能工业相机系统的研究[D].杭州:浙江大学,2016.
[11] 许敬华.基于远心镜头的视觉齿轮倒角测量方法研究[D].天津:天津科技大学,2016.
[12] 王明威.基于双远心镜头的虹膜图像采集方法[D].沈阳:沈阳工业大学,2016.
[13] STEGER C,ULRICH M.A camera model for line-scan cameras with telecentric lenses[J].International Journal of Computer Vision,2021,129(1):80-99.
[14] 王洪益.一种远心镜头的标定方法及精度研究[J].光学技术,2018,44(3):359-364.
[15] HAN H H,DENG H Y,DONG Q,et al.An advanced OTSU method integrated with edge detection and decision tree for crack detection in highway transportation infrastructure[J].Advances in Materials Science and Engineering,2021,2021:9205509.
[16] 娄联堂,何慧玲.基于图像灰度变换的OTSU阈值优化算法[J].中南民族大学学报(自然科学版),2021,40(3):325-330.
[17] CHEN X L,LI J,HUANG S W,et al.An automatic concrete crack-detection method fusing point clouds and images based on improved OTSUs algorithm[J].Sensors,2021,21(5):1581.
[18] LI N,LV X,XU S K,et al.An improved water surface images segmentation algorithm based on the OTSU method[J].Journal of Circuits,Systems and Computers,2020,29(15):2050251.
[19] 张婷婷.基于分数阶理论与最小二乘法的复杂背景车道线检测研究[D].西安:长安大学,2017.
[20] 樊德金,杨龙兴,丁力,等.基于改进最小二乘法的焊缝直线提取研究[J].热加工工艺,2018,47(15):217-220.

Memo

Memo:
-
Last Update: 1900-01-01