|Table of Contents|

Phased array ultrasonic testing of electron beam weld penetration at generator head(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年05期
Page:
84-92
Research Field:
目次
Publishing date:

Info

Title:
Phased array ultrasonic testing of electron beam weld penetration at generator head
Author(s):
ZHAO Can WANG Jianchao ZHANG Jian ZHANG Nan WANG Yonghong
(Xian Space Engine Company Limited, Xian 710100, China)
Keywords:
phased array ultrasonic penetration measurement electron beam welding gas generator
PACS:
TG115.28
DOI:
-
Abstract:
In order to solve the problem of weld penetration measurement at the head of gas generator in liquid rocket engine, the phased array ultrasonic testing technology was studied.The principle of penetration measurement was described according to the welding structure characteristics of generator head.Through the inspection tests on the simulated parts with rectangular groove artificial defects, the rationality of the ultrasonic simulation model and the validity of the calculation results were verified.Transverse wave sound field information of phased array probes with different frequencies was obtained through simulation analysis, and the probe frequency was optimized.According to the variation of echo amplitude of incomplete penetration with the focus depth under different welding penetration depths and the measurement results, the optimal value range of the focus depth was obtained.The simulation specimen of the generator head was used for testing and compared with the metallographic measurements.The results show that for the weld thickness of about 11 mm, the measurement error of penetration is less than 1 mm compared with the metallographic value, when using 10 MHz linear phased array probe and focal depth is 8 mm, which meets the quantitative requirements of engineering.

References:

[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
[2] 赵芳,任泽斌.燃气发生器应用综述[J].火箭推进,2019,45(3):1-8.
ZHAO F,REN Z B.Overview of application of combustion-gas generator[J].Journal of Rocket Propulsion,2019,45(3):1-8.
[3] 张锋,严宇,杨伟东,等.气氧/煤油富燃燃气发生器积碳特性试验研究[J].火箭推进,2017,43(6):76-81.ZHANG F,YAN Y,YANG W D,et al.Experimental investigation on soot deposition in a fuel-rich GOX/kerosene gas generator[J].Journal of Rocket Propulsion,2017,43(6):76-81.
[4] 秦新华,叶力华,周塞塞,等.燃气发生器固定连接结构可靠性改进设计[J].火箭推进,2014,40(6):31-36.
QIN X H,YE L H,ZHOU S S,et al.Reliability improvement of fixed connection structure of gas generator[J].Journal of Rocket Propulsion,2014,40(6):31-36.
[5] 刘上,刘红军,王海燕.富氧燃气发生器液氧供应系统频率特性分析[J].火箭推进,2013,39(2):12-18.
LIU S,LIU H J,WANG H Y.Frequency characteristic analysis for LOX feed system of oxidizer-rich preburner[J].Journal of Rocket Propulsion,2013,39(2):12-18.
[6] 谢宝奎,闫世春,刘晓斌,等.组合齿轮焊缝熔深超声波检测[J].无损探伤,2012,36(6):28-29.
[7] 唐盛明,齐子诚,刘子瑜,等.电子束焊缝超声波C扫描与工业CT检测方法测试结果比较[J].无损检测,2014,36(10):49-52.
[8] 任俊波,唐月明,王学权,等.锆合金浅焊缝熔深超声显微检测技术研究[J].材料导报,2015,29(S1):80-82.
[9] 余亮,陈玉华,黄春平,等.搅拌摩擦焊焊缝缺陷的超声相控阵检测技术[J].焊接学报,2014,35(1):21-24.
[10] 史亦韦.超声检测[M].北京:机械工业出版社,2005.
[11] 李斯特·W,斯克姆尔·Jr.超声相控阵原理[M].徐春广,李卫彬,译.北京:国防工业出版社,2017.
[12] 李衍.超声相控阵技术(第一部分):基本概念[J].无损探伤,2007,31(4):24-28.
[13] 程高飞.基于CIVA平台的材料中超声检测声场分布和小缺陷响应建模仿真及实验研究[D].杭州:浙江大学,2017.
[14] 张小龙,张子健,吴家喜,等.奥氏体不锈钢厚壁对接焊缝的超声相控阵CIVA仿真与试验[J].无损检测,2018,40(9):30-34.
[15] 戈浩.相控阵超声检测横向分辨力的影响因素[J].无损检测,2018,40(7):27-30.
[16] 杨平华,林莉,刘春伟,等.相控阵超声检测横向分辨力实验测试及分析[J].仪器仪表学报,2011,32(6):1384-1389.
[17] 王锐.未来聚变堆真空室复杂焊缝相控阵超声检测关键技术研究[D].合肥:中国科学技术大学,2019.

Memo

Memo:
-
Last Update: 1900-01-01