|Table of Contents|

Lightweight design method of transmission frame structure considering the overhang constraint of additive manufacturing(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年04期
Page:
26-35
Research Field:
目次
Publishing date:

Info

Title:
Lightweight design method of transmission frame structure considering the overhang constraint of additive manufacturing
Author(s):
YE Shurui1 HAO Wenyu1 SUN Zhi12 GUO Xu12
(1.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; 2.Ningbo Institute of Dalian University of Technology, Ningbo 315016, China)
Keywords:
topology optimization additive manufacturing lightweight frame moving morphable component
PACS:
V421.4
DOI:
-
Abstract:
The transmission frame structure of lunch vehicles is the key connecting part which transmits the thrust load of the engine to the rocket body. The lightweight optimization of the transmission frame structures with a relatively large mass can effectively improve the thrust weight ratio of the lunch vehicles, realize the high-efficiency bearing of the structure and stable production by additive manufacturing technology. In this paper, based on the framework of moving morphable component(MMC)and considering the overhang constraint in additive manufacturing, a lightweight design method of lunch vehicle transmission frame structure was proposed. This method can consider the design requirements such as stiffness, mass, design space and manufacturing constraints, and maximize the structural stiffness under the constraint of limiting the weight(volume)of the structure. This paper deduces the formulation of related optimization problems, gives the optimization process, and shows some typical examples. Finally, through the analysis of the optimization results, the optimization results meet the stiffness requirements of the transmission frame structure of the launch vehicle engine and the maximum stress requirements of the transmission frame material, which have significant advantages over the traditional frame structure in terms of quality. There is no large cantilever structure in the optimization results, and the suspension constraints unique to additive manufacturing are satisfied, which proves the effectiveness of this method.

References:

[1] 王玮,张众,陈振知,等.现役运载火箭运载能力提升措施研究[J].上海航天(中英文),2020,37(S2):59-64.
[2] 王国辉,曾杜娟,刘观日,等.中国下一代运载火箭结构技术发展方向与关键技术分析[J].宇航总体技术,2021,5(5):1-11.
[3] 顾名坤,何巍,唐科,等.中国液体运载火箭结构系统发展规划研究[J].宇航总体技术,2021,5(2):55-67.
[4] 郝宝新,周志成,曲广吉,等.大型航天器桁架式主承力结构构型拓扑优化研究[J].航天器工程,2014,23(2):44-51.
[5] 张卫红,章胜冬,高彤.薄壁结构的加筋布局优化设计[J].航空学报,2009,30(11):2126-2131.
[6] 王立朋,何飞,郭文杰,等.载人运载火箭飞船支撑结构动响应优化设计[J].载人航天,2017,23(2):168-172.
[7] 谭莉,程博,贾铎,等.多工况下的发动机支架拓扑优化设计[J].航空发动机,2022,48(2):90-95.
[8] 谷小军,徐珉轲,张薇,等.重型运载火箭发动机机架与舱段传力结构一体化拓扑优化设计[J].火箭推进,2022,48(2):27-35.
GU X J,XU M K,ZHANG W,et al.Integrated topology optimization design of heavy rocket engine frame and segment force transmission structure[J].Journal of Rocket Propulsion,2022,48(2):27-35.
[9] 谷小军,李城彬,王文龙,等.拓扑优化与增材制造技术的融合及其在民用飞行器设计中的应用[J].航空制造技术,2022,65(14):14-20.
[10] 刘书田,李取浩,陈文炯,等.拓扑优化与增材制造结合:一种设计与制造一体化方法[J].航空制造技术,2017,60(10):26-31.
[11] 郑伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(6):1-6.
ZHENG W,LI H L,CHEN X H.Application prospect of laser rapid prototyping technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(6):1-6.
[12] BENDSØE M P.Optimal shape design as a material distribution problem[J].Structural Optimization,1989,1(4):193-202.
[13] ZHOU M,ROZVANY G I N.The COC algorithm,Part II:Topological,geometrical and generalized shape optimization[J].Computer Methods in Applied Mechanics and Engineering,1991,89(1/2/3):309-336.
[14] BENDSØE M P,SIGMUND O.Topology,optimization:Theory,methods,and applications[M].2nd ed.Berlin:Springer,2003.
[15] DÍAZ A,SIGMUND O.Checkerboard patterns in layout optimization[J].Structural Optimization,1995,10(1):40-45.
[16] GUEST J K,PRÉVOST J H,BELYTSCHKO T.Achieving minimum length scale in topology optimization using nodal design variables and projection functions[J].International Journal for Numerical Methods in Engineering,2004,61(2):238-254.
[17] GUEST J K.Imposing maximum length scale in topology optimization[J].Structural and Multidisciplinary Optimization,2009,37(5):463-473.
[18] SIGMUND O,PETERSSON J.Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards,mesh-dependencies and local minima[J].Structural Optimization,1998,16(1):68-75.
[19] GUO X,ZHANG W S,ZHONG W L.Doing topology optimization explicitly and geometrically:A new moving morphable components based framework[J].Journal of Applied Mechanics,2014,81(8):081009.
[20] 李佳霖,赵剑,孙直,等.基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计[J].力学学报,2022,54(1):244-251.
[21] LANGELAAR M.An additive manufacturing filter for topology optimization of print-ready designs[J].Structural and Multidisciplinary Optimization,2017,55(3):871-883.
[22] GUO X,ZHANG W S,ZHANG J,et al.Explicit structural topology optimization based on moving morphable components(MMC)with curved skeletons[J].Computer Methods in Applied Mechanics and Engineering,2016,310:711-748.
[23] ZHANG W S,SONG J F,ZHOU J H,et al.Topology optimization with multiple materials via moving morphable component(MMC)method[J].International Journal for Numerical Methods in Engineering,2018,113:1653-1675.
[24] ALLAIRE G,JOUVE F,TOADER A M.Structural optimization using sensitivity analysis and a level-set method[J].Journal of Computational Physics,2004,194(1):363-393.
[25] WANG M Y,WANG X M,GUO D M.A level set method for structural topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2003,192(1/2):227-246.
[26] ZHANG W S,LI D,YUAN J,et al.A new three-dimensional topology optimization method based on moving morphable components(MMCs)[J].Computational Mechanics,2017,59(4):647-665.
[27] ZHANG W S,ZHONG W L,GUO X.Explicit layout control in optimal design of structural systems with multiple embedding components[J].Computer Methods in Applied Mechanics and Engineering,2015,290:290-313.
[28] ZHANG W S,YUAN J,ZHANG J,et al.A new topology optimization approach based on moving morphable components(MMC)and the ersatz material model[J].Structural and Multidisciplinary Optimization,2016,53(6):1243-1260.
[29] SVANBERG K.The method of moving asymptotes:A new method for structural optimization[J].International Journal for Numerical Methods in Engineering,1987,24(2):359-373.

Memo

Memo:
-
Last Update: 1900-01-01