|Table of Contents|

Compilation method of reusable rocket engine turbopump load spectrum(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
97-104
Research Field:
目次
Publishing date:

Info

Title:
Compilation method of reusable rocket engine turbopump load spectrum
Author(s):
SUN Yujian1 LI Guang1 XU Zili1 DU Dahua2 YAN Song2 WANG Jun2
1.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2.National Key Laboratory of Aerospace Liquid Propulsion, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
reusable rocket turbopump multiple ignition loadspectrum
PACS:
V434.21
DOI:
10.3969/j.issn.1672-9374.2024.01.009
Abstract:
Abstract:The first sub-stage engine of the reusable rocket sends the rocket into the predetermined orbit through multiple fires, returns and recovers at a fixed point, and the damage accumulation and fatigue problems will occur after multiple starts and shutdowns. It is an important work in the development of the reusable rocket engine to master the real load spectrum of the liquid engine turbo pump. A load spectrum programming method is proposed for the reuse of the first substage engine turbopump of rocket. According to the recovery mission plan, the full cycle flight profile of the mission is determined, the rocket dynamics equation is established, and the thrust adjustment range and mass flow rate of the engine in each flight profile of a substage are calculated. Based on propellant composition, mass flow rate and other parameters, the speed and power changes of a turbopump are calculated, and the speed spectrum and power spectrum are prepared. Based on the analysis of SpaceX Falcon 9 sub-stage land recovery mission CRS-11, the full cycle load spectrum of the mission is compiled, and a sub-stage engine thrust spectrum, turbopump speed spectrum and power spectrum are obtained. The load spectrum compilation method is verified by the real thrust data. The research results can provide support for the development of reusable engines.

References:

[1] DENEU F, MALASSIGNE M, LE-COULS O, et al. Promising solutions for fully reusable two-stage-to-orbit configurations[J]. Acta Astronautica, 2005, 56(8): 729-736.
[2]BYSANI S K, KARPUR A, ARUN N. Vertical landing rockets[C]//4th TMAL02 Expert Conference.[S.l.]:[s.n.], 2019.
[3]FERRANTE R. A robust control approach for rocket landing[D].Edinburgh: University of Edinburgh, 2017.
[4]BLACKMORE L.Autonomous precision landing of spacerockets[Z].2016.
[5]郑雄, 杨勇, 姚世东, 等. 法尔肯9可重复使用火箭发展综述[J]. 导弹与航天运载技术, 2016(2): 39- 46.
ZHENG X, YANG Y, YAO S D, et al. Survey and review on development of falcon 9 reusable rocket[J]. Missiles and Space Vehicles, 2016(2): 39- 46.
[6]胡冬生, 张雪梅, 刘丙利, 等. 重复使用火箭垂直回收任务弹道分析[J]. 导弹与航天运载技术, 2018(5): 21-26.
HU D S, ZHANG X M, LIU B L, et al. Trajectory analysis on vertical-recovery missions of reusable launch vehicle[J]. Missiles and Space Vehicles, 2018(5): 21-26.
[7]HEINRICH S,HUMBERT A, AMIEL R. Greenspace: recovery and reusability scenarios for launcher industry[C]//2018 SpaceOps Conference.[S.I.]:[s.n.],2018.
[8]谭永华, 李平, 杜飞平. 重复使用天地往返运输系统动力技术发展研究[J]. 载人航天, 2019, 25(1): 1-11.
TAN Y H, LI P, DU F P. Research on development of propulsion technology for reusable space transportation system[J]. Manned Spaceflight, 2019, 25(1): 1-11.
[9]李杨, 刘昶, 王吉飞, 等. 垂直起降运载火箭总体方案研究[J]. 南京航空航天大学学报, 2019, 51(S1): 1-6.
LI Y, LIU C, WANG J F, et al. Study on the overall scheme of vertical take-off and landing launch vehicle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(S1): 1-6.
[10]贺小帆, 朱俊贤. 军用飞机结构耐久性严重谱编制与应用研究进展[J]. 航空学报, 2022, 43(12): 025070.
HE X F, ZHU J X. Advances in durability severe spectrum: development and application for military aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025070.
[11]马双员, 张永峰. 航空发动机载荷谱综述[J]. 现代机械, 2011(5): 15-17.
MA S Y, ZHANG Y F. Overview of aeroengine loading spectrum[J]. Modern Machinery, 2011(5): 15-17.
[12]李斌, 张小平, 马冬英. 我国新一代载人火箭液氧煤油发动机[J]. 载人航天, 2014, 20(5): 427- 431.
LI B, ZHANG X P, MA D Y. The LOx/kerosene rocket engine for Chinese new-generation manned launch vehicle[J]. Manned Spaceflight, 2014, 20(5): 427- 431.
[13]李斌, 陈晖, 马冬英, 等. 500 tf级液氧煤油高压补燃发动机研制进展[J]. 火箭推进, 2022, 48(2): 1-10.
LI B, CHEN H, MA D Y, et al. Development of 500 tf class high pressure stage combustion LOx/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 1-10.
[14]王振, 谭永华, 黄道琼, 等. 液体火箭发动机结构中的疲劳问题[C]//中国力学大会2017暨庆祝中国力学学会成立60周年大会论文集.北京:中国力学学会, 2017.
[15]张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 4-15.
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 4-15.
[16]ABDUL-AZIZ A. Assessment of crack growth in a space shuttle main engine first-stage high-pressure fuel turbopump blade[J]. Finite Elements in Analysis and Design, 2002, 39(1): 1-15.
[17]BLAIR J, RYAN R S, SCHUTZENHOFER L A. Lessons learned in engineering[R]. NASA/CR-2011-216468, 2011.
[18]SpaceX.Falcon user's guide[EB/OL].[2023-07-15].https://www.spacex.com.
[19]NASA.Falcon 9 launches with CRS-11 Dragon on 100th 39A launch[EB/OL]. [2023-07-18].https://www. nasaspaceflight.com/2017/06/spacex-falcon-9-crs-11-dragon-iss-100th-39a.

Memo

Memo:
-
Last Update: 1900-01-01