[1] 高亮,李培根,黄培,等.数字化设计类工业软件发展策略研究[J].中国工程科学,2023,25(2):254-262.
GAO L, LI P G, HUANG P, et al. Development strategies of industrialsoftware for desigh[J]. Strategic Study of CAE, 2023,25(2):254-262.
[2]臧雪静, 李也然, 王庆国, 等. 加快培育我国航天领域工业软件启示建议[J]. 航天工业管理, 2022(8): 53-55.
ZANG X J, LI Y R, WANG Q G, et al. Enlightenment and suggestion on speeding up the cultivation of industrial software in China's aerospace field[J]. Aerospace Industry Management, 2022(8): 53-55.
[3]黄志新. ANSYS Workbench 16.0超级学习手册 [M]. 北京: 人民邮电出版社, 2018.
[4]叶书睿, 郝文宇, 孙直, 等. 考虑增材制造悬垂约束的传力机架轻量化设计方法[J]. 火箭推进, 2023,49(4): 26-35.
YE S R, HAO W Y, SUN Z, et al. Lightweight design method of transmission frame structure considering the overhang constraint of additive manufacturing[J]. Journal of Rocket Propulsion, 2023, 49(4): 26-35.
[5]MATSSON J E. An introduction to ANSYS fluent 2022[M]. Singapore: SDC Publications, 2022.
[6]张晟, 金平, 蔡国飙. 推力室冷却通道结构可靠性仿真及参数敏感性分析[J]. 航空动力学报, 2018,33(11): 2651-2659.
ZHANG S, JIN P, CAI G B. Structural reliability simulation and parameter sensitivity analysis of cooling channel for thrust chamber[J]. Journal of Aerospace Power, 2018, 33(11): 2651-2659.
[7]LEE H H. Finite element simulations with ANSYS workbench 2022: theory, applications, case studies [M]. Singapore: SDC Publications, 2022.
[8]尚现伟, 张强, 金平, 等. 超弹性橡胶膜片疲劳寿命及可靠性分析[J]. 导弹与航天运载技术, 2022(3): 47-52.
SHANG X W, ZHANG Q, JIN P, et al. Fatigue life and reliability analysis of superelastic rubber diaphragm[J]. Missiles and Space Vehicles, 2022(3): 47-52.
[9]QI Y Q, JIN P, LI R Z, et al. Dynamic reliability analysis for the reusable thrust chamber: a multi-failure modes investigation based on coupled thermal-structural analysis[J]. Reliability Engineering & System Safety, 2020, 204: 107080.
[10]祖磊, 葛庆, 李德宝, 等. 基于ABAQUS的固体火箭发动机复合材料壳体快速化建模方法及验证分析[J]. 固体火箭技术, 2022, 45(1): 67-75.
ZU L, GE Q, LI D B, et al. Rapid modeling method and verification analysis of SRM composite case base on ABAQUS[J]. Journal of Solid Rocket Technology, 2022, 45(1): 67-75.
[11]杨磊, 郭治斌, 尤春艳, 等. 一种基于ABAQUS的火箭弹部段连接刚度模型修正方法研究[J]. 机械, 2021, 48(12): 43-48.
YANG L, GUO Z B, YOU C Y, et al. Research on a rocket structure connection stiffness model updating method based on ABAQUS[J]. Machinery, 2021, 48(12): 43-48.
[12]HÖTTE F, HAUPT M C. Transient 3D conjugate heat transfer simulation of a rectangular GOX-GCH4 rocket combustion chamber and validation[J]. Aerospace Science and Technology, 2020, 105: 106043.
[13]叶莺樱. 某新型发动机结构振动特性分析[D]. 北京: 中国运载火箭技术研究院, 2019.
YE Y Y. Analysis of structure vibration characteristics of a new type of engine[D]. Beijing: China Academy of Launch Vehicle Technology, 2019.
[14]HORNE S. MSC/NASTRAN[M]//Finite element systems. Berlin: Springer, 1982: 287-294.
[15]MACNEAL R H.The NASTRAN theoretical manual[M]. American: Scientific and Technical Information Office, 1970.
[16]GASPARETTO V E L, REID J, PARSONS W P, et al. Multi-objective design optimization of multiple tuned mass dampers for attenuation of dynamic aeroelastic response of aerospace structures[J]. Aerospace, 2023,10(3): 235.
[17]GOMEZ A, SMITH H. Liquid hydrogen fuel tanks for commercial aviation: structural sizing and stress analysis[J]. Aerospace Science and Technology, 2019, 95: 105438.
[18]ABDUL-AZIZ A. Assessment of crack growth in a space shuttle main engine first-stage high-pressure fuel turbopump blade[J]. Finite Elements in Analysis and Design, 2002, 39(1): 1-15.
[19]高庆, 王建民, 王晓晖, 等. 基于Nastran动力学优化的频响函数模型修正方法[J]. 导弹与航天运载技术, 2010(3): 39-42.
GAO Q, WANG J M, WANG X H, et al. FRF model updating method based on nastran dynamical optimiza-tion[J]. Missiles and Space Vehicles, 2010(3): 39-42.
[20]陈文英, 张兵志. 基于Patran和MSC Nastran的压电智能桁架结构振动模态分析[J]. 计算机辅助工程, 2013, 22(S1): 179-182.
CHEN W Y, ZHANG B Z. Vibration modal analysis of piezoelectric intelligent truss structure based on Patran and MSC Nastran[J]. Computer Aided Engineering, 2013, 22(S1): 179-182.
[21]李宇峰, 晏明生, 安宁, 等. 基于MSC.Nastran/HyperWorks的薄壁圆筒隔框结构拓扑优化设计[J]. 强度与环境, 2015, 42(4): 35-39.
LI Y F, YAN M S, AN N, et al. An integrated approach based on MSC. Nastran/HyperWorks for topology optimization of stiffened ribs of thin-walled cylinders[J]. Structure & Environment Engineering, 2015, 42(4): 35-39.
[22]WANG Z F, FANG J, SONG Z J, et al. Study on speed sensor-less vector control of induction motors based on AMESim-matlab/simulink simulation[J]. Energy Procedia, 2017, 105: 2378-2383.
[23]付永领, 祁晓野. AMESim系统建模和仿真: 从入门到精通[M]. 北京: 北京航空航天大学出版社, 2006.
[24]GILBERT CHANDRA D, VINOTH B, SRINIVASULU REDDY U, et al. Recurrent neural network based soft sensor for flow estimation in liquid rocket engine injector calibration[J]. Flow Measurement and Instrumentation, 2022, 83: 102105.
[25]ZHOU C, YU N J, CAI G B, et al. Comparison between the dynamic characteristics of electric pump fed engine and expander cycle engine[J]. Aerospace Science and Technology, 2022, 124: 107508.
[26]RAHME S, MESKIN N. Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine[J]. Control Engineering Practice, 2015, 38: 57-74.
[27]BERTONI M, JOHANSSON C, LARSSON T C. Methods and tools for knowledge sharing in product development[M]//BORDEGONI M, RIZZI C. Innovation in Product Design. London: Springer, 2011.
[28]STAFFORD J, NEWPORT D, GRIMES R. A compact modeling approach to enhance collaborative design of thermal-fluid systems[J]. Journal of Electronic Packaging, 2014, 136(1): 011004.
[29]ALEXIOU A, TSALAVOUTAS A, PONS B, et al. Assessing alternative fuels for helicopter operation [J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 35-47.
[30]BALA A, SETHI V, GATTO E L, et al. PROOSIS:a collaborative venture for gas turbine performance simulation using an object oriented programming schema[C]//18th ISABE Conference. Beijing: [s.n.], 2007.
[31]REDON R, LARSSON A, LEBLOND R, et al. VIVACE context based search platform[C]//6th International and Interdisciplinary Conference on Modeling and Using Context. Roskilde, Denmark: ACM, 2007.
[32]MOROZ L, BURLAKA M, BARANNIK V, et al. Liquid rocket propulsion launcher design system to train AxSTREAM. AI. reusability aspects[C]//8th European Conference for Aeronautics and Space Science. Reston, Virginia: AIAA, 2019.
[33]LEONARDI M, DI MATTEO F, STEELAN T J, et al. Thrust chamber modelling for the analysis of liquid rocket engine transients[C]//Space Propulsion Conference. [S.l.]:[s.n.], 2014.
[34]EINICKE K. Mixture ratio and combustion chamber pressure control of an expander-bleed rocket engine with reinforcement learning[D]. Dresden: TU Dresden, 2021.
[35]LEONARDI M, NASUTI F, DI MATTEO F, et al. A methodology to study the possible occurrence of chugging in liquid rocket engines during transient start-up[J]. Acta Astronautica, 2017, 139: 344-356.
[36]ORDONNEAU G, ALBANO G, MASSE J. CARINS: a future versatile and flexible tool for engine transient prediction[C]//4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”. Corsica Island: ESA, 2002.
[37]IANNETTI A, MARZAT J, PIET-LAHANIER H, et al. Fault diagnosis benchmark for a rocket engine demonstrator[J]. IFAC-PapersOnLine, 2015, 48(21): 895-900.
[38]CLIQUET E, IANNETTI A, MASSE J. Carmen, liquid propulsion systems simulation platform[J]. Progress in Propulsion Physics, 2011, 2: 695-706.
[39]IANNETTI A, PALERM S, MARZAT J, et al. HMS developments for the rocket engine demonstrator Mascotte[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2015.
[40]金捷. 美国推进系统数值仿真(NPSS)计划综述[J]. 燃气涡轮试验与研究, 2003, 16(1): 57-62.
JIN J. A summary of numerical propulsion simulation system(NPSS)by NASA[J]. Gas Turbine Experiment and Research, 2003, 16(1): 57-62.
[41]CARTER R E, SMITH B M, CLEARY S C, et al. An integrated hybrid-electric airplane, propulsion and power sizing method[C]//AIAA SCITECH 2022 Forum. Reston, Virginia: AIAA, 2022.
[42]CARTER R E, AGARWAL R K. Development of a liquid hydrogen combustion high bypass geared turbofan model in NPSS[C]//AIAA AVIATION 2022 Forum. Reston, Virginia: AIAA, 2022.
[43]JOYNER C R, JENNINGS T, HANKS D E, et al. NTP engine system design and modeling[C]//ASCEND 2022. Reston, Virginia: AIAA, 2022.
[44]FILIPPONE A, BOJDO N. Rotorcraft propulsion systems[M]//Lecture Notes in Rotorcraft Engineering. [S.l.]: Springer International Publishing, 2023: 57-83.
[45]姜殿恒, 陈飙松, 张盛, 等. 基于SiPESC平台的声子晶体能带结构分析算法研究及软件实现[J]. 工程力学, 2022, 39(12): 1-12.
JIANG D H, CHEN B S, ZHANG S, et al. Research and software implementation of energy band structure analysis algorithm of phononic crystals based on sipesc platform[J]. Engineering Mechanics, 2022, 39(12): 1-12.
[46]周英杰, 陆旭泽, 张盛, 等. 基于SiPESC平台用户材料子程序的UMAT实现[J]. 计算机辅助工程, 2016, 25(3): 5-12.
ZHOU Y J, LU X Z, ZHANG S, et al. Implementation of user-defined mechanical material behavior subroutine UMAT based on SiPESC platform[J]. Computer Aided Engineering, 2016, 25(3): 5-12.
[47]石小林, 王为. 数字空间站建设及其应用[J]. 航天器工程, 2022, 31(6): 76-85.
SHI X L, WANG W. Digital space station and its application[J]. Spacecraft Engineering, 2022, 31(6): 76-85.
[48]邢涛, 孙乐丰, 王为,等. 数字空间站动力学与控制仿真建模与飞控应用[J]. 空间控制技术与应用, 2021, 47(5): 40-47.
XING T, SUN L F, WANG W, et al. Digital space station dynamic and control simulation modeling and flight control application[J]. Aerospace Control and Application, 2021, 47(5): 40-47.
[49]张培红,周桂宇,沈盈盈,等.NNW-FlowStar软件模拟并联分离特性研究[J/OL].北京航空航天大学学报:1-14[2024-04-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0275.
ZHANG P H, ZHOU G Y, SHEN Y Y, et al. Research on simulation of parallel separation characteristics using NNW-FlowStar software[J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-14[2024-04-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0275.
[50]陈坚强, 吴晓军, 张健,等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 1-22.
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for National Numerical Windtunnel(NNW)Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 1-22.
[51]刘昆, 张育林, 程谋森. 液体火箭发动机系统瞬变过程模块化建模与仿真[J]. 推进技术, 2003, 24(5): 401-405.
LIU K, ZHANG Y L, CHENG M S. Modularization modeling and simulation for the transients of liquid propellant rocket engines[J]. Journal of Propulsion Technology, 2003, 24(5): 401-405.
[52]吴忧,徐旭,陈兵,等.高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1):28-41.