|Table of Contents|

Consideration on the development of aerospace propulsion system analysis software(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年02期
Page:
1-14
Research Field:
目次
Publishing date:

Info

Title:
Consideration on the development of aerospace propulsion system analysis software
Author(s):
SHANG Xianwei1 QIN Zheng2 JIN Ping1 CAI Guobiao1
1.School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 102206, China; 2.Astronaut Research and Training Center of China, Beijing 100094, China
Keywords:
aerospace propulsion system industrial software models and solvers CAE intelligentization
PACS:
V214
DOI:
10.3969/j.issn.1672-9374.2024.02.001
Abstract:
Aerospace propulsion system analysis software is an important cornerstone to promote the development of space technology, but there is still a big gap between domestic and foreign software, and it is urgent to determine the development direction of China's high-level autonomous and controllable aerospace propulsion system analysis software. The development history of large-scale general analysis software is systematically sorted out and its development trend is analyzed. The development rules and characteristics of typical analysis software used in the aero-engine field are further analyzed. By referring to the above software development experience and combining it with the current development status of aerospace propulsion system analysis software, the development direction and approach of relevant software in China is put forward. The study proposes to break through the three major directions of general simulation platform development, software model and solver development, and intelligent data fusion and management with aerospace propulsion characteristics in three stages. Eventually, an intelligent analysis software system for aerospace propulsion system with multi-domain, multi-physical field, multi-dimension, intelligence and integrated data fusion management will be formed, which will provide strong support for the steady development of China's aerospace technology.

References:

[1] 高亮,李培根,黄培,等.数字化设计类工业软件发展策略研究[J].中国工程科学,2023,25(2):254-262.
GAO L, LI P G, HUANG P, et al. Development strategies of industrialsoftware for desigh[J]. Strategic Study of CAE, 2023,25(2):254-262.
[2]臧雪静, 李也然, 王庆国, 等. 加快培育我国航天领域工业软件启示建议[J]. 航天工业管理, 2022(8): 53-55.
ZANG X J, LI Y R, WANG Q G, et al. Enlightenment and suggestion on speeding up the cultivation of industrial software in China's aerospace field[J]. Aerospace Industry Management, 2022(8): 53-55.
[3]黄志新. ANSYS Workbench 16.0超级学习手册 [M]. 北京: 人民邮电出版社, 2018.
[4]叶书睿, 郝文宇, 孙直, 等. 考虑增材制造悬垂约束的传力机架轻量化设计方法[J]. 火箭推进, 2023,49(4): 26-35.
YE S R, HAO W Y, SUN Z, et al. Lightweight design method of transmission frame structure considering the overhang constraint of additive manufacturing[J]. Journal of Rocket Propulsion, 2023, 49(4): 26-35.
[5]MATSSON J E. An introduction to ANSYS fluent 2022[M]. Singapore: SDC Publications, 2022.
[6]张晟, 金平, 蔡国飙. 推力室冷却通道结构可靠性仿真及参数敏感性分析[J]. 航空动力学报, 2018,33(11): 2651-2659.
ZHANG S, JIN P, CAI G B. Structural reliability simulation and parameter sensitivity analysis of cooling channel for thrust chamber[J]. Journal of Aerospace Power, 2018, 33(11): 2651-2659.
[7]LEE H H. Finite element simulations with ANSYS workbench 2022: theory, applications, case studies [M]. Singapore: SDC Publications, 2022.
[8]尚现伟, 张强, 金平, 等. 超弹性橡胶膜片疲劳寿命及可靠性分析[J]. 导弹与航天运载技术, 2022(3): 47-52.
SHANG X W, ZHANG Q, JIN P, et al. Fatigue life and reliability analysis of superelastic rubber diaphragm[J]. Missiles and Space Vehicles, 2022(3): 47-52.
[9]QI Y Q, JIN P, LI R Z, et al. Dynamic reliability analysis for the reusable thrust chamber: a multi-failure modes investigation based on coupled thermal-structural analysis[J]. Reliability Engineering & System Safety, 2020, 204: 107080.
[10]祖磊, 葛庆, 李德宝, 等. 基于ABAQUS的固体火箭发动机复合材料壳体快速化建模方法及验证分析[J]. 固体火箭技术, 2022, 45(1): 67-75.
ZU L, GE Q, LI D B, et al. Rapid modeling method and verification analysis of SRM composite case base on ABAQUS[J]. Journal of Solid Rocket Technology, 2022, 45(1): 67-75.
[11]杨磊, 郭治斌, 尤春艳, 等. 一种基于ABAQUS的火箭弹部段连接刚度模型修正方法研究[J]. 机械, 2021, 48(12): 43-48.
YANG L, GUO Z B, YOU C Y, et al. Research on a rocket structure connection stiffness model updating method based on ABAQUS[J]. Machinery, 2021, 48(12): 43-48.
[12]HÖTTE F, HAUPT M C. Transient 3D conjugate heat transfer simulation of a rectangular GOX-GCH4 rocket combustion chamber and validation[J]. Aerospace Science and Technology, 2020, 105: 106043.
[13]叶莺樱. 某新型发动机结构振动特性分析[D]. 北京: 中国运载火箭技术研究院, 2019.
YE Y Y. Analysis of structure vibration characteristics of a new type of engine[D]. Beijing: China Academy of Launch Vehicle Technology, 2019.
[14]HORNE S. MSC/NASTRAN[M]//Finite element systems. Berlin: Springer, 1982: 287-294.
[15]MACNEAL R H.The NASTRAN theoretical manual[M]. American: Scientific and Technical Information Office, 1970.
[16]GASPARETTO V E L, REID J, PARSONS W P, et al. Multi-objective design optimization of multiple tuned mass dampers for attenuation of dynamic aeroelastic response of aerospace structures[J]. Aerospace, 2023,10(3): 235.
[17]GOMEZ A, SMITH H. Liquid hydrogen fuel tanks for commercial aviation: structural sizing and stress analysis[J]. Aerospace Science and Technology, 2019, 95: 105438.
[18]ABDUL-AZIZ A. Assessment of crack growth in a space shuttle main engine first-stage high-pressure fuel turbopump blade[J]. Finite Elements in Analysis and Design, 2002, 39(1): 1-15.
[19]高庆, 王建民, 王晓晖, 等. 基于Nastran动力学优化的频响函数模型修正方法[J]. 导弹与航天运载技术, 2010(3): 39-42.
GAO Q, WANG J M, WANG X H, et al. FRF model updating method based on nastran dynamical optimiza-tion[J]. Missiles and Space Vehicles, 2010(3): 39-42.
[20]陈文英, 张兵志. 基于Patran和MSC Nastran的压电智能桁架结构振动模态分析[J]. 计算机辅助工程, 2013, 22(S1): 179-182.
CHEN W Y, ZHANG B Z. Vibration modal analysis of piezoelectric intelligent truss structure based on Patran and MSC Nastran[J]. Computer Aided Engineering, 2013, 22(S1): 179-182.
[21]李宇峰, 晏明生, 安宁, 等. 基于MSC.Nastran/HyperWorks的薄壁圆筒隔框结构拓扑优化设计[J]. 强度与环境, 2015, 42(4): 35-39.
LI Y F, YAN M S, AN N, et al. An integrated approach based on MSC. Nastran/HyperWorks for topology optimization of stiffened ribs of thin-walled cylinders[J]. Structure & Environment Engineering, 2015, 42(4): 35-39.
[22]WANG Z F, FANG J, SONG Z J, et al. Study on speed sensor-less vector control of induction motors based on AMESim-matlab/simulink simulation[J]. Energy Procedia, 2017, 105: 2378-2383.
[23]付永领, 祁晓野. AMESim系统建模和仿真: 从入门到精通[M]. 北京: 北京航空航天大学出版社, 2006.
[24]GILBERT CHANDRA D, VINOTH B, SRINIVASULU REDDY U, et al. Recurrent neural network based soft sensor for flow estimation in liquid rocket engine injector calibration[J]. Flow Measurement and Instrumentation, 2022, 83: 102105.
[25]ZHOU C, YU N J, CAI G B, et al. Comparison between the dynamic characteristics of electric pump fed engine and expander cycle engine[J]. Aerospace Science and Technology, 2022, 124: 107508.
[26]RAHME S, MESKIN N. Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine[J]. Control Engineering Practice, 2015, 38: 57-74.
[27]BERTONI M, JOHANSSON C, LARSSON T C. Methods and tools for knowledge sharing in product development[M]//BORDEGONI M, RIZZI C. Innovation in Product Design. London: Springer, 2011.
[28]STAFFORD J, NEWPORT D, GRIMES R. A compact modeling approach to enhance collaborative design of thermal-fluid systems[J]. Journal of Electronic Packaging, 2014, 136(1): 011004.
[29]ALEXIOU A, TSALAVOUTAS A, PONS B, et al. Assessing alternative fuels for helicopter operation [J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 35-47.
[30]BALA A, SETHI V, GATTO E L, et al. PROOSIS:a collaborative venture for gas turbine performance simulation using an object oriented programming schema[C]//18th ISABE Conference. Beijing: [s.n.], 2007.
[31]REDON R, LARSSON A, LEBLOND R, et al. VIVACE context based search platform[C]//6th International and Interdisciplinary Conference on Modeling and Using Context. Roskilde, Denmark: ACM, 2007.
[32]MOROZ L, BURLAKA M, BARANNIK V, et al. Liquid rocket propulsion launcher design system to train AxSTREAM. AI. reusability aspects[C]//8th European Conference for Aeronautics and Space Science. Reston, Virginia: AIAA, 2019.
[33]LEONARDI M, DI MATTEO F, STEELAN T J, et al. Thrust chamber modelling for the analysis of liquid rocket engine transients[C]//Space Propulsion Conference. [S.l.]:[s.n.], 2014.
[34]EINICKE K. Mixture ratio and combustion chamber pressure control of an expander-bleed rocket engine with reinforcement learning[D]. Dresden: TU Dresden, 2021.
[35]LEONARDI M, NASUTI F, DI MATTEO F, et al. A methodology to study the possible occurrence of chugging in liquid rocket engines during transient start-up[J]. Acta Astronautica, 2017, 139: 344-356.
[36]ORDONNEAU G, ALBANO G, MASSE J. CARINS: a future versatile and flexible tool for engine transient prediction[C]//4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”. Corsica Island: ESA, 2002.
[37]IANNETTI A, MARZAT J, PIET-LAHANIER H, et al. Fault diagnosis benchmark for a rocket engine demonstrator[J]. IFAC-PapersOnLine, 2015, 48(21): 895-900.
[38]CLIQUET E, IANNETTI A, MASSE J. Carmen, liquid propulsion systems simulation platform[J]. Progress in Propulsion Physics, 2011, 2: 695-706.
[39]IANNETTI A, PALERM S, MARZAT J, et al. HMS developments for the rocket engine demonstrator Mascotte[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2015.
[40]金捷. 美国推进系统数值仿真(NPSS)计划综述[J]. 燃气涡轮试验与研究, 2003, 16(1): 57-62.
JIN J. A summary of numerical propulsion simulation system(NPSS)by NASA[J]. Gas Turbine Experiment and Research, 2003, 16(1): 57-62.
[41]CARTER R E, SMITH B M, CLEARY S C, et al. An integrated hybrid-electric airplane, propulsion and power sizing method[C]//AIAA SCITECH 2022 Forum. Reston, Virginia: AIAA, 2022.
[42]CARTER R E, AGARWAL R K. Development of a liquid hydrogen combustion high bypass geared turbofan model in NPSS[C]//AIAA AVIATION 2022 Forum. Reston, Virginia: AIAA, 2022.
[43]JOYNER C R, JENNINGS T, HANKS D E, et al. NTP engine system design and modeling[C]//ASCEND 2022. Reston, Virginia: AIAA, 2022.
[44]FILIPPONE A, BOJDO N. Rotorcraft propulsion systems[M]//Lecture Notes in Rotorcraft Engineering. [S.l.]: Springer International Publishing, 2023: 57-83.
[45]姜殿恒, 陈飙松, 张盛, 等. 基于SiPESC平台的声子晶体能带结构分析算法研究及软件实现[J]. 工程力学, 2022, 39(12): 1-12.
JIANG D H, CHEN B S, ZHANG S, et al. Research and software implementation of energy band structure analysis algorithm of phononic crystals based on sipesc platform[J]. Engineering Mechanics, 2022, 39(12): 1-12.
[46]周英杰, 陆旭泽, 张盛, 等. 基于SiPESC平台用户材料子程序的UMAT实现[J]. 计算机辅助工程, 2016, 25(3): 5-12.
ZHOU Y J, LU X Z, ZHANG S, et al. Implementation of user-defined mechanical material behavior subroutine UMAT based on SiPESC platform[J]. Computer Aided Engineering, 2016, 25(3): 5-12.
[47]石小林, 王为. 数字空间站建设及其应用[J]. 航天器工程, 2022, 31(6): 76-85.
SHI X L, WANG W. Digital space station and its application[J]. Spacecraft Engineering, 2022, 31(6): 76-85.
[48]邢涛, 孙乐丰, 王为,等. 数字空间站动力学与控制仿真建模与飞控应用[J]. 空间控制技术与应用, 2021, 47(5): 40-47.
XING T, SUN L F, WANG W, et al. Digital space station dynamic and control simulation modeling and flight control application[J]. Aerospace Control and Application, 2021, 47(5): 40-47.
[49]张培红,周桂宇,沈盈盈,等.NNW-FlowStar软件模拟并联分离特性研究[J/OL].北京航空航天大学学报:1-14[2024-04-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0275.
ZHANG P H, ZHOU G Y, SHEN Y Y, et al. Research on simulation of parallel separation characteristics using NNW-FlowStar software[J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-14[2024-04-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0275.
[50]陈坚强, 吴晓军, 张健,等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 1-22.
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for National Numerical Windtunnel(NNW)Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 1-22.
[51]刘昆, 张育林, 程谋森. 液体火箭发动机系统瞬变过程模块化建模与仿真[J]. 推进技术, 2003, 24(5): 401-405.
LIU K, ZHANG Y L, CHENG M S. Modularization modeling and simulation for the transients of liquid propellant rocket engines[J]. Journal of Propulsion Technology, 2003, 24(5): 401-405.
[52]吴忧,徐旭,陈兵,等.高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1):28-41.

Memo

Memo:
-
Last Update: 1900-01-01