|Table of Contents|

Simulation analysis on noise reduction schemes for small and medium thrust rocket engine testing(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年02期
Page:
27-38
Research Field:
目次
Publishing date:

Info

Title:
Simulation analysis on noise reduction schemes for small and medium thrust rocket engine testing
Author(s):
SUN Dechuan1 HUANG Xinyin2 WANG Yuanding2 GUO Manli2 SHAO Qing2
1.State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment,Dalian University of Technology, Dalian 116024, China; 2. Shanghai Institute of Space Propulsion, Shanghai 201112, China
Keywords:
rocket engine test firing aerodynamic noise noise reduction numerical simulation
PACS:
V411.6
DOI:
10.3969/j.issn.1672-9374.2024.02.003
Abstract:
The noise generated during rocket engine testing is very large, and reducing its intensity is important to environmental protection. A noise reduction scheme was proposed for the testing of medium-and small-thrust liquid rocket engines, which included an ejector tube, muffler, and water spray combination, and numerical simulation research was conducted. Research has shown that the ejector not only serves as an ejector but also isolates the main jet noise source area from the environment, playing a major role in noise reduction.For small-thrust engine jets, the noise reduction effect of grid-type silencers is very good, and there is no need to add water spraying measures. For medium-thrust engine jets, the noise reduction effect of water spray is not obvious, and its main role is to cool down and reduce gas diffusion pollution. It is not suitable to use too large water spray flow and too small spray particle size. For 300 N level engines, the ejector tube carries less force, while the rear wall carries a force equivalent to the thrust. For 3 kN level engines, the ejector tube carries most of the engine's thrust, while the rear wall carries less force.

References:

[1] 刘子俊, 冯勇, 陈景龙, 等. 基于多源数据的液体火箭发动机智能异常检测[J]. 火箭推进, 2022, 48(3): 79-86.
LIU Z J, FENG Y, CHEN J L, et al. Intelligent anomaly detection of liquid rocket engine with multi-source data[J]. Journal of Rocket Propulsion, 2022, 48(3): 79-86.
[2]池保华, 洪流, 孙璠, 等. 红外热像仪在液体火箭发动机热试车中的应用[J]. 火箭推进, 2009, 35(4): 59-62.
CHI B H, HONG L, SUN F, et al. The application of temperature measuring by infrared camera in hot firing tests for liquid rocket engine[J]. Journal of Rocket Propulsion, 2009, 35(4): 59-62.
[3]翟超慧, 刘妍琛, 杜永乐. 喷流噪声声源识别与声源机理分析方法进展[J]. 航空工程进展, 2020, 11(1):1-9.
ZHAI C H, LIU Y C, DU Y L. Progress of the identification of noise sources and analysis of noise source mechanisms in jets[J]. Advances in Aeronautical Science and Engineering, 2020, 11(1): 1-9.
[4]徐悦. 航空发动机尾喷流微喷降噪技术研究进展[J]. 航空科学技术, 2011, 22(2): 52-54.
XU Y. Research progress on aeroengine jet noise reduction by microjet[J]. Aeronautical Science & Technology, 2011, 22(2): 52-54.
[5]陈劲松, 曾玲芳, 平仕良, 等. 大型火箭发射喷水降噪技术研究进展[J]. 导弹与航天运载技术, 2019(2): 94-100.
CHEN J S, ZENG L F, PING S L, et al. Advances of water suppression technology for large rocket launching noise[J]. Missiles and Space Vehicles, 2019(2): 94-100.
[6]GEERY E, GREENWOOD R. Water injection for rapid cooling of a flow of rocket exhaust gases[C]//5th Propulsion Joint Specialist.Reston, Virigina: AIAA, 1969.
[7]EDQUIST C. Prediction of the launch pulse for gas generator launched missiles[C]//Joint Propulsion Conference. Reston, Virigina: AIAA, 1988.
[8]GELY D, ELIAS G, BRESSON C, et al. Reduction of supersonic jet noise:application to the Ariane 5 launch vehicle[C]//6th Aeroacoustics Conference and Exhibit. Reston, Virigina: AIAA, 2000.
[9]郑克扬, 桂辛民, 岑拯. 喷流噪声特性与控制研究[J]. 北京航空航天大学学报, 1991, 17(2): 72-78.
ZHENG K Y, GUI X M, CEN Z. Jet noise characteristic and control[J]. Journal of Beijing University of Aeronautics and Astronautics, 1991, 17(2): 72-78.
[10]徐强, 廖光煊, 李军, 等. 火箭燃气射流近场噪声特性实验研究[J]. 推进技术, 2002, 23(4): 318-320.XU Q, LIAO G X, LI J, et al. Experimental study of near field rocket noise in exhausted flow field[J]. Journal of Propulsion Technology, 2002, 23(4): 318-320.
[11]周月荣, 郑刘, 陈志敏. 轴对称直喷管的射流噪声特性实验研究[J]. 实验力学, 2011, 26(3): 274-278.ZHOU Y R, ZHENG L, CHEN Z M. Experimental study of jet flow noise characteristics of an axial symmetric straight nozzle[J]. Journal of Experimental Mechanics, 2011, 26(3): 274-278.
[12]彭小波, 李佳明, 胡春波. 固体火箭发动机喷流噪声测量及声场分析[J]. 实验流体力学, 2013, 27(1): 52-55.PENG X B, LI J M, HU C B. Experimental study on jet noise characteristics of solid rocket motor[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 52-55.
[13]陈海峰, 刘晓, 赵政社, 等. 液体火箭发动机试验噪声测试分析[J]. 火箭推进, 2014, 40(3): 83-90.CHEN H F, LIU X, ZHAO Z S, et al. Noise detection in test of liquid rocket engine[J]. Journal of Rocket Propulsion, 2014, 40(3): 83-90.
[14]孙得川, 王园丁, 黄欣寅, 等. 不同推力与射流类型的火箭发动机排气噪声仿真研究[J]. 兵器装备工程学报, 2023, 44(1): 29-37.
SUN D C, WANG Y D, HUANG X Y, et al. Simulation study on exhaust noise of a rocket engine with different thrust and jet types[J]. Journal of Ordnance Equipment Engineering, 2023, 44(1): 29-37.
[15]徐悦, 周旭, 张志成, 等. 火箭发动机燃气射流喷水降噪研究[J]. 航空动力学报, 2010, 25(4): 816-820.
XU Y, ZHOU X, ZHANG Z C, et al. Reduction of rocket engine jet noise by water injection[J]. Journal of Aerospace Power, 2010, 25(4): 816-820.
[16]MORRIS P J, MCLAUGHLIN D K, KUO C W. Noise reduction in supersonic jets by nozzle fluidic inserts[J]. Journal of Sound and Vibration, 2013, 332(17): 3992-4003.
[17]PRASAD C, MORRIS P J. A study of noise reduction mechanisms of jets with fluid inserts[J]. Journal of Sound and Vibration, 2020, 476: 115331.
[18]TSUTSUMI S, ISHII T, UI K, et al. Study on acoustic prediction and reduction of epsilon launch vehicle at liftoff[J]. Journal of Spacecraft and Rockets, 2015, 52(2): 350-361.
[19]陈劲松, 吴新跃, 张国栋, 等. 单喷管火箭发射喷水降噪机理研究[J]. 导弹与航天运载技术, 2015(5): 66-69.
CHEN J S, WU X Y, ZHANG G D, et al. Study on water jet noise reduction mechanism during single-nozzle rocket launch[J]. Missiles and Space Vehicles, 2015(5): 66-69.
[20]ZOLLA P M, FIORE M, LAPENNA P E, et al. A design strategy for water-based noise suppression systems in liquid rocket engines firing tests[J]. CEAS Space Journal, 2023, 15(4): 597-611.

Memo

Memo:
-
Last Update: 1900-01-01