|Table of Contents|

Ascent trajectory optimization for RBCC powered cruise vehicle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年02期
Page:
49-56
Research Field:
目次
Publishing date:

Info

Title:
Ascent trajectory optimization for RBCC powered cruise vehicle
Author(s):
XU Zheng TAN Jianguo ZHANG Dongdong
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha 410073, China
Keywords:
RBCC cruise vehicle climbing phase trajectory optimization
PACS:
V421.1
DOI:
10.3969/j.issn.1672-9374.2024.02.005
Abstract:
The climbing trajectory optimization of the vehicle employing rocket based combined cycle(RBCC)engine has been an important issue during the overall design. The pseudo-spectral method was employed to perform the trajectory optimization of RBCC cruise vehicle. Taking the consumption of propellant as the performance index and the flight attack angle as the design variable, the longitudinal plane trajectory optimization model of the vehicle was established. Aerodynamic characteristic of the vehicle and the performance of RBCC were obtained, then climbing trajectory of the vehicle was optimized. Results show that: optimal trajectory includes acceleration with constant height, climbing with constant dynamic pressure, climbing with constant speed, etc; rocket engine works in mode of open-close-open, and there is no need to adjust rocket thrust greatly; the range of the vehicle reaches 2 430 km under the condition of appropriate maximum mass flow rate of rocket engine and appropriate constraint of dynamic pressure.

References:

[1] 王亚军, 何国强, 秦飞, 等. 火箭冲压组合动力研究进展[J]. 宇航学报, 2019, 40(10): 1125-1133.
WANG Y J, HE G Q, QIN F, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1125-1133.
[2]SHI L, ZHAO G J, YANG Y Y, et al. Experimental study on ejector-to-ramjet mode transition in a divergent kerosene-fueled RBCC combustor with low total temperature inflow[J]. Aerospace Science and Technology, 2020, 99: 105734.
[3]刘昊, 王君, 张留欢. SMC模式下RBCC发动机4Ma工况性能仿真[J]. 火箭推进, 2021, 47(2): 27-31.
LIU H, WANG J, ZHANG L H. Performance simulation of 4Ma operating condition under SMC mode for RBCC engine[J]. Journal of Rocket Propulsion, 2021, 47(2): 27-31.
[4]LIU Y S, XUE R, LIU J L, et al. Numerical study on the dynamic process of ramjet/scramjet mode transition in the integrated RBCC full flow path through multistage fuel injection strategies[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106857.
[5]SHI L, ZHAO G J, YANG Y Y, et al. Experimental study on ejector-to-ramjet mode transition in a divergent kerosene-fueled RBCC combustor with low total temperature inflow[J]. Aerospace Science and Technology, 2020, 99: 105734.
[6]张玫, 张蒙正, 刘昊. 火箭基组合循环动力研究进展[J]. 科技导报, 2020, 38(12): 54-68.
ZHANG M, ZHANG M Z, LIU H. Progress and analysis of rocket based combined cycle(RBCC)propulsion system[J]. Science & Technology Review, 2020, 38(12): 54-68.
[7]杜文豪, 邓新宇, 马英, 等. RBCC单级入轨运载器总体方案设计[J]. 战术导弹技术, 2019(6): 60-66.
DU W H, DENG X Y, MA Y, et al. System design for single-stage-to-orbit launch vehicle utilizing RBCC propulsion[J]. Tactical Missile Technology, 2019(6): 60-66.
[8]KLINK P, OGAWA H. Investigation on the performance and feasibility of RBCC-based access-to-space via multi-objective design optimization[J]. Acta Astronautica, 2019, 157: 435-454.
[9]阮建刚, 何国强, 吕翔. RBCC-RKT两级入轨飞行器起飞质量估算方法[J]. 推进技术, 2013, 34(5): 603-608.
RUAN J G, HE G Q, LYU X. Takeoff mass estimation methods in two-stage-to-orbit RBCC-RKT launch vehicle[J]. Journal of Propulsion Technology, 2013, 34(5): 603-608.
[10]罗哲, 王舒眉, 闫循良, 等. RBCC动力高超声速飞行器上升段轨迹优化设计[J]. 红外与激光工程,2022(4): 1-12.
LUO Z, WANG S M, YAN X L, et al. Trajectory optimization design of ascending stage of RBCC powered hypersonic vehicle[J]. Infrared and Laser Engineering, 2022(4): 1-12.
[11]王厚庆, 何国强, 刘佩进, 等. 以RBCC为动力的巡航飞行器轨迹与质量分析[J]. 西北工业大学学报, 2006, 24(6): 774-777.
WANG H Q, HE G Q, LIU P J, et al. Trajectory and mass analysis of RBCC-powered cruise vehicles[J]. Journal of Northwestern Polytechnical University, 2006, 24(6): 774-777.
[12]郑雄, 刘竹生, 杨勇, 等. RBCC高超声速巡航飞行器轨迹优化与设计[J]. 航天控制, 2016, 34(5): 21-26.
ZHENG X, LIU Z S, YANG Y, et al. Trajectory optimization and design for RBCC hypersonic cruise vehicle[J]. Aerospace Control, 2016, 34(5): 21-26.
[13]周宏宇, 王小刚, 赵亚丽, 等. 组合动力运载器上升段轨迹智能优化方法[J]. 宇航学报, 2020, 41(1): 61-70.
ZHOU H Y, WANG X G, ZHAO Y L, et al. Ascent trajectory optimization for a multi-combined-cycle-based launch vehicle using a hybrid heuristic algorithm[J]. Journal of Astronautics, 2020, 41(1): 61-70.
[14]JIA Y C, YE W, CUI P, et al. Climbing performance analysis of rocket-based combined cycle engine powered aircraft[J]. Acta Astronautica, 2019, 162: 135-144.
[15]龚春林, 韩璐, 谷良贤. 适应于RBCC运载器的轨迹优化建模研究[J]. 宇航学报, 2013, 34(12): 1592-1598.
GONG C L, HAN L, GU L X. Research on modeling of trajectory optimization for RBCC-powered RLV[J]. Journal of Astronautics, 2013, 34(12): 1592-1598.
[16]王治宇, 李高春, 韩永恒, 等. 冲压发动机导弹爬升段和巡航段轨迹优化[J]. 航空动力学报, 2021, 36(5): 1103-1112.
WANG Z Y, LI G C, HAN Y H, et al. Ascent and cruise trajectory optimization for ramjet powered missile[J]. Journal of Aerospace Power, 2021, 36(5): 1103-1112.
[17]黄荣, 邵会兵, 梁彪, 等. 基于参轨综合优化的组合动力可重复使用运载器性能提升[J]. 战术导弹技术, 2020(5): 149-156.
HUANG R, SHAO H B, LIANG B, et al. Performance improvement of combined cycle engine reusable launch vehicle based on parameters and trajectory overall optimization[J]. Tactical Missile Technology, 2020(5): 149-156.
[18]梁欣欣, 王惠, 姜威. 升力式飞行器助推段多约束弹道优化设计[J]. 弹道学报, 2022, 34(1): 17-21.
LIANG X X, WANG H, JIANG W. Optimization design of trajectory in boost phase of lift vehicle with multi-constraints[J]. Journal of Ballistics, 2022, 34(1): 17-21.
[19]李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13.
LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13.
[20]陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016.
CHEN J. Research on the thermal working process and performance potential of Ma4-7 dual-mode ramjet combustor [D].Mianyang: China Aerodynamics Research and Development Center, 2016.

Memo

Memo:
-
Last Update: 1900-01-01