|Table of Contents|

Performance comparison of multi-mode ion thrusters at home and abroad(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年02期
Page:
67-76
Research Field:
目次
Publishing date:

Info

Title:
Performance comparison of multi-mode ion thrusters at home and abroad
Author(s):
LI Xuan ZHANG Xueer ZHANG Tianping
Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
Keywords:
multi-mode ion thruster performance adjustment capability
PACS:
V439
DOI:
10.3969/j.issn.1672-9374.2024.02.007
Abstract:
Multi-mode performance is one of the crucial aspects in the development and application of ion thruster. By comparing and analyzing the multi-mode performance of ion thrusters at home and abroad, the variation law of multi-mode performance of different types of ion thrusters is obtained, which proves that the multi-mode performance of domestic ion thrusters has come up to the advanced world level. At the same time, the performance adjustment capability of multi-mode ion thruster is defined and compared. In addition, the DC toroidal field thruster has the best performance adjustment ability, followed by the RF discharge thruster, and the DC divergent field thruster has the lowest performance adjustment ability.

References:

[1] 张天平, 杨福全, 李娟, 等. 离子电推进技术[M]. 北京: 科学出版社, 2020.
ZHANG T P, YANG F Q, LI J, et al. Technology of ion electric propulsion[M]. Beijing: Science Press, 2020.
[2]GOEBEL D M,KTZ I. Fundamentals of electric propulsion: ion and Hall thruster[M]. La Canada Flintridge: Jet Propulsion Laboratory, 2008.
[3]张天平, 张雪儿. 离子电推进的航天器应用实践及启示[J]. 真空与低温, 2019, 25(2): 73-81.
ZHANG T P, ZHANG X E. Application practices and realizations of the ion electric propulsion on spacecraft[J]. Vacuum and Cryogenics, 2019, 25(2): 73-81.
[4]赵以德, 张天平, 黄永杰, 等. 40 cm离子推力器功率宽范围工作实验研究[J]. 推进技术, 2018, 39(4): 942-947.
ZHAO Y D, ZHANG T P, HUANG Y J, et al. Experimental study of 40 cm ion thruster over a wide range of input power[J]. Journal of Propulsion Technology, 2018, 39(4): 942-947.
[5]LI J, ZHANG T P, ZHAO Y D, et al. Development of 10 kW LIPS-400 ion thruster[C]//7th CSA/IAA Conference on Advanced Space Technology, Space Technology Innovation and Space Commercialization. Shanghai, China: CSA, 2017.
[6]PATTERSON M, PINERO L, SOVEY J. Near-term high power ion propulsion options for earth-orbital applica-tions[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2009.
[7]THOMAS R E,AULISIO M V. NEXT single string integration tests in support of the double asteroid redirection test mission[C]//36th International Electric Propulsion Conference.[S.l.]:[s.n.], 2019.
[8]赵以德, 吴宗海, 张天平, 等. 离子推力器多模式化研究[J]. 推进技术, 2020, 41(1): 187-193.
ZHAO Y D, WU Z H, ZHANG T P, et al. Research on multi-mode realization of ion thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 187-193.
[9]ZHANG X E, ZHANG T P, LI D T. Lifetime and mission reliability assessment of multi-mode ion thruster[J]. Journal of Electric Propulsion, 2022, 1(1): 5.
[10]POLK J E. Performance of the NSTAR ion propulsion system on the deep space one mission[C]//Aerospace Conference. New York:IEEE, 2013.
[11]GARNER C E,RAYMAN M D. In-flight operation of the Dawn ion propulsion system through completion of the final orbit transfer around Dwarf planet ceres[C]//2018 Joint Propulsion Conference. Cincinnati, Ohio:[s.n.], 2018.
[12]胡竟, 王东升, 杨福全, 等. 面向空间无拖曳飞行任务的连续变推力离子推力器研制[J]. 真空与低温, 2022, 28(1): 72-78.
HU J, WANG D S, YANG F Q, et al. Development of continuous variable-thrust ion thruster for drag-free flight missions[J]. Vacuum and Cryogenics, 2022, 28(1): 72-78.
[13]杨福全, 王成飞, 胡竟, 等. 超低轨道卫星应用离子电推进技术方案[J]. 中国空间科学技术, 2021, 41(3): 52-59.
YANG F Q, WANG C F, HU J, et al. Technical project of ion propulsion for satellites in super low earth orbit[J]. Chinese Space Science and Technology, 2021, 41(3): 52-59.
[14]RANDALL P N,LEWIS R A,CLARK S D,et al. T5 performance, industrialisation and future applications[C]//36th International Electric Propulsion Conference. Wien, Austria:[s.n.], 2019.
[15]WALLACE N C. The GOCE ion propulsion assembly lessons learned from the first 22 months of flight operations[R]. IEPC-2011-327, 2011.
[16]SNYDER J, GOEBEL D M, HOFER R R, et al. Performance evaluation of the T6 ion engine[J]. Journal of Propulsion and Power, 2012, 28(2): 371-379.
[17]WALLACE N, SUTHERLAND O, BOLTER J, et al. Bepicolombo-solar electric propulsion system operations for the transit to mercury[C]//36th International Electric Propulsion Conference. [S.l.]:[s.n.], 2019.
[18]PORST J P,ALTMANN C H,ARNOLD C,et al. The RIT 2X propulsion system: current development status[C] //35th International Electric Propulsion Conference. Atlanta, Georgia:[s.n.], 2017.
[19]LEITER H J, ALTMANN C H,PORST J P, et al. Six decades of thrust-the Ariane group radiofrequency ion thrusters and systems family[Z]. 2017.
[20]HITOSHI K. Ambitious challenges of Japanese electric propulsion[C]//29th International Electric Propulsion Conference.Princeton: Princeton University, 2005.
[21]张天平,孟伟,张雪儿,等. 离子推力器产品型谱化发展研究[C]//中国第十七届电推进学术会议.兰州:[s.n.], 2021.
[22]PAVARIN D, ROCCA S, MANENTE M, et al. Multi-objective low-thruster trajectory optimization: variable and constant specific impulse[C]//4th International Spacecraft Propulsion Conference. Cagliari, Italy:[s.n.], 2004.
[23]CASALINO L, COLASURDO G. Trade-off between payload and trip-time for EP interplanetary trajectories[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2004.
[24]张天平, 张雪儿, 李璇. 离子与霍尔电推进性能和质量的工程数据模型[J]. 火箭推进, 2022, 48(1): 1-13.
ZHANG T P, ZHANG X E, LI X. Engineering data models of performance and mass for ion and Hall electric propulsions[J]. Journal of Rocket Propulsion, 2022, 48(1): 1-13.

Memo

Memo:
-
Last Update: 1900-01-01