[1] 郭登帅, 康小明, 刘欣宇, 等. 场发射电推力器的研究现状及其关键技术[J]. 火箭推进, 2018, 44(4): 1-9.
GUO D S, KANG X M, LIU X Y, et al. Research status and key technologies of field emission electric propulsion thruster[J]. Journal of Rocket Propulsion, 2018, 44(4): 1-9.
[2]于达仁, 牛翔, 王泰卜, 等. 面向空间引力波探测任务的微推进技术研究进展[J]. 中山大学学报(自然科学版), 2021, 60(1): 194-212.
YU D R, NIU X, WANG T B, et al. The developments of micro propulsion technology based on space gravitational wave detection task[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1): 194-212.
[3]GONG Y G, LUO J, WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy, 2021, 5: 881-889.
[4]陈茂林, 刘旭辉, 周浩浩, 等. 适用于微纳卫星的微型电推进技术研究进展[J]. 固体火箭技术, 2021, 44(2): 188-206.
CHEN M L, LIU X H, ZHOU H H, et al. Research and development of micro electric propulsion technology for micro/nano satellites[J]. Journal of Solid Rocket Technology, 2021, 44(2): 188-206.
[5]于达仁, 乔磊, 蒋文嘉, 等. 中国电推进技术发展及展望[J]. 推进技术, 2020, 41(1): 1-11.
YU D R, QIAO L, JIANG W J, et al. Development and prospect of electric propulsion technology in China[J]. Journal of Propulsion Technology, 2020, 41(1): 1-11.
[6]LEGGE R S, LOZANO P, MARTINEZ-SANCHEZ M. Fabrication and characterization of porous metal emitters for electrospray thrusters[C]//30th International Electric Propulsion Conference. Florence, Italy: IEPC, 2007.
[7]CHEN C, CHEN M L, ZHOU H H. Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter[J]. Plasma Science and Technology, 2020, 22(9): 094009.
[8]LIU X Y, KANG X M, DENG H W, et al. Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips[J]. Plasma Science and Technology, 2021, 23(12): 125502.
[9]张天平, 张雪儿, 李璇. 离子与霍尔电推进性能和质量的工程数据模型[J]. 火箭推进, 2022, 48(1): 1-13.
ZHANG T P, ZHANG X E, LI X. Engineering data models of performance and mass for ion and Hall electric propulsions[J]. Journal of Rocket Propulsion, 2022, 48(1): 1-13.
[10]ZIEMER J, MARRESE-READING C, CUTLER C, et al. In-flight verification and validation of colloid micro-thruster performance[C]//2018 Joint Propulsion Conference. Reston, Virginia: AIAA, 2018.
[11]KREJCI D, MIER-HICKS F, FUCETOLA C P, et al. Design and characterization of a scalable ion electrospray propulsion system[C]//30th International Symposium on Space Technology and Science. Hyogo, Japan: ISTS, 2015.
[12]JORNS B A, GORODETSKY A A, LASKY I M, et al. Uncertainty quantification of electrospray thruster array lifetime[C]//36th International Electric Propulsion Conference. [S.l.]: IEPC, 2019.
[13]ST PETER B, DRESSLER R A, CHIU Y H, et al. Electrospray propulsion engineering toolkit(ESPET)[J]. Aerospace, 2020, 7(7): 91.
[14]雪佳强, 郭宁, 孟伟, 等. 多孔阵列式电喷雾推力器纯离子电流的物理模型[J]. 推进技术, 2023, 44(6): 171-182.
XUE J Q, GUO N, MENG W, et al. Physical model for current of electrospray thruster with porous emitter array operated in pure ionic regime[J]. Journal of Propulsion Technology, 2023, 44(6): 171-182.
[15]DRESSLER R A, PETER B S, CHIU Y H, et al. Multiple emission sites on porous glass electrospray propulsion emitters using dielectric propellants [J]. Journal of Propulsion and Power, 2022, 38(5): 809-821.
[16]NATISIN M R, ZAMORA H L. Performance of a fully conventionally machined liquid-ion electrospray thruster operated in PIR[C]//36th International Electric Propulsion Conference. [S.l]: IEPC, 2019.
[17]WHITTAKER C B, GORODETSKY A, JORNS B. Quantifying uncertainty in the scaling laws of porous electrospray emitters[C]//AIAA Propulsion and Energy 2020 Forum. Reston, Virginia: AIAA, 2020.
[18]WRIGHT P, WIRZ R E. Transient flow in porous electrospray emitters[C]//AIAA Propulsion and Energy 2021 Forum. Reston, Virginia: AIAA, 2021.
[19]程世豪. 离子液体微型电推进器三维仿真与性能分析[D]. 南京: 南京航空航天大学, 2017.
CHENG S H. Three dimensional simulation and performance analysis of ionic liquid micro thruster[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
[20]COFFMAN C, ANCHEZ M, HIGUERA F J, et al. Structure of the menisci of leaky dielectric liquids during electrically-assisted evaporation of ions[J]. Applied Physics Letters, 2016, 109(23): 231602.
[21]VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python[J]. Nature Methods, 2020, 17(3): 261-272.
[22]SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
[23]SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2): 259-270.
[24]HERMAN J, USHER W. SALib: an open-source Python library for sensitivity analysis[J]. The Journal of Open Source Software, 2017, 2(9): 97.
[25]YANG Y T, GUO D W, LI X K, et al. Development and characterization of a novel porous-media borosilicate glass ion sources for electrospray thruster[J]. Aerospace, 2021, 8(10): 297.
[26]NATISIN M R, ZAMORA H L, HOLLEY Z A, et al. Efficiency mechanisms in porous-media electrospray thrusters[J]. Journal of Propulsion and Power, 2021, 37(5): 650-659.
[27]NATISIN M R, ZAMORA H L, MCGEHEE W A, et al. Fabrication and characterization of a fully conventionally machined, high-performance porous-media electrospray thruster[J]. Journal of Micromechanics and Microengineering, 2020, 30(11): 115021.