|Table of Contents|

Fluid-solid coupling response analysis of propellant tank in attitude-orbit control system under impact load(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
19-27
Research Field:
目次
Publishing date:

Info

Title:
Fluid-solid coupling response analysis of propellant tank in attitude-orbit control system under impact load
Author(s):
ZHANG Xuan1 WANG Xuyang2 XU Zili1 XUE Jie2 WANG Jun2
1. State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2.National Key Laboratory of Aerospace Liquid Propulsion,Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
propellant tank SPH method half-sine impact fluid-solid interaction dynamic analysis
PACS:
V414.1
DOI:
10.3969/j.issn.1672-9374.2024.03.003
Abstract:
A propellant tank will generate strong fluid-solid coupled vibration under the high-magnitude impact load, which may cause structural damage in severe cases. In order to precisely predict the impact response of liquid-filled tanks and reveal the mechanism of fluid-solid coupled vibration inside it, a coupled dynamics model of the liquid-filled tank was established by adopting smooth particle hydrodynamics(SPH)in combination with the structural finite element method. Acceleration results of the tank with different loading magnitudes and filling ratios were calculated and compared with those obtained from experiments. The results show that the acceleration response of the tank fluctuates sharply under a high magnitude load with a high filling ratio. For the calculated tank, the fluctuation occurs when the magnitude reaches -3 dB at a full filling ratio, with a peak value of 5.33g. The fluctuation also occurs when the filling ratio reaches 75% at 0 dB, with a peak value of 7.88g, while the most obvious fluctuation appers at 0 dB with a full filling ratio, with the peak value of 24.24g, which is only 2.7% off from the experimental results. By analyzing the motion pattern of fluid and structure during the impact period, it can be seen that the fluctuation of acceleration response after the impact is triggered by the violent collision of fluid and shell after the separation between them.

References:

[1] 尹立中, 赵阳, 王本利, 等. 贮箱类液固耦合动力学研究[J]. 工程力学, 2000, 17(5): 127-130.
YIN L Z, ZHAO Y, WANG B L, et al. On the dynamics of liquid/structure coupling of containers[J]. Engineering Mechanics, 2000, 17(5): 127-130.
[2]BJELDE B, VOZOFF M, SHOTWELL G. The falcon 1 launch vehicle: demonstration flights, status, manifest, and upgrade path[EB/OL]. [2023-07-17]. https://www.semanticscholar.org/paper/The-Falcon-1-Launch-Vehicle%3A-Demonstration-Flights%2C-Bjelde-Vozoff/e2e0c55949043314307b1a466689946449949e47, 2007.
[3]李青, 王天舒, 马兴瑞. 充液航天器液体晃动和液固耦合动力学的研究与应用[J]. 力学进展, 2012, 42(4): 472-481.
LI Q, WANG T S, MA X R. Reviews on liquid sloshing dynamics and liquid-structure coupling dynamics in liquid-filled spacecrafts[J]. Advances in Mechanics, 2012, 42(4): 472-481.
[4]ABRAMSON H. The dynamic behavior of liquids in moving containers, with applications to space vehicle technology[EB/OL]. [2023-07-17]. https://www.semanticscholar.org/paper/The-Dynamic-Behavior-of-Liquids-in-Moving-with-to-Abramson/77655df1317daf96d480b5e49494
e60d139c2315, 1966.
[5]ISAACSON M, RYU C S. Earthquake-induced sloshing in vertical container of arbitrary section[J]. Journal of Engineering Mechanics, 1998, 124(2): 158-166.
[6]GAVRILYUK I, LUKOVSKY I, TROTSENKO Y, et al. Sloshing in a vertical circular cylindrical tank with an annular baffle(part 1): linear fundamental solutions[J]. Journal of Engineering Mathematics, 2006, 54(1): 71-88.
[7]吴文军, 李超, 高超南. 球形贮箱内液体晃动实验及动力学特性研究[J]. 实验力学, 2021, 36(6): 849-859.
WU W J, LI C, GAO C N. Experimental and dynamic characteristics studies for liquid sloshing in a spherical tank[J]. Journal of Experimental Mechanics, 2021, 36(6): 849-859.
[8]王为, 夏恒新, 李俊峰, 等. 半球形容器中液体自由晃动非线性现象的实验研究[J]. 清华大学学报(自然科学版), 2008, 48(11): 2009-2012.
WANG W, XIA H X, LI J F, et al. Experimental investigation of nonlinear liquid sloshing in a hemispherical container[J]. Journal of Tsinghua University(Science and Technology), 2008, 48(11): 2009-2012.
[9]GREEN S, BURKEY R, VIANA F, et al. Fluid sloshing characteristics in spacecraft propellant tanks with diaphragms[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2007.
[10]李康迪, 王珺, 徐自力, 等. 某型液体火箭发动机部分进气涡轮盘振动分析及改型设计[J]. 火箭推进, 2023, 49(1): 80-86.
LI K D, WANG J, XU Z L, et al. Vibration analysis and modification design of partial admission turbine disk for a liquid rocket engine[J]. Journal of Rocket Propulsion, 2023, 49(1): 80-86.
[11]薛杰, 何尚龙, 杜大华, 等. 充液容器流固耦合模态仿真分析研究[J]. 火箭推进, 2015, 41(1): 90-97.
XUE J, HE S L, DU D H, et al. Study on fluid-structure coupling modal simulation of liquid filling container[J]. Journal of Rocket Propulsion, 2015, 41(1): 90-97.
[12]岳宝增, 唐勇. 球形贮箱中三维液体大幅晃动数值模拟[J]. 宇航学报, 2016, 37(12): 1279-1284.
YUE B Z, TANG Y. Numerical simulation of three dimensional large-amplitude liquid sloshing in spherical containers[J]. Journal of Astronautics, 2016, 37(12): 1279-1284.
[13]周倩倩, 谭永华, 徐自力, 等. 运载火箭圆柱形贮箱中推进剂大幅晃动的数值模拟[J]. 推进技术, 2022, 43(5): 358-364.
ZHOU Q Q, TAN Y H, XU Z L, et al. Numerical simulation of large sloshing of propellant in cylinder tank of launch vehicle[J]. Journal of Propulsion Technology, 2022, 43(5): 358-364.
[14]袁雄飞. 基于VOF方法的机翼油箱燃油晃动分析与防晃研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
YUAN X F. Research of fuel sloshing in aircraft wing tank based on vof method and sloshing suppression[D]. Harbin: Harbin Institute of Technology, 2017.
[15]马骏骁, 马亮, 魏承, 等. 基于SPH方法的球形贮箱液体晃动动力学分析[J]. 中国空间科学技术, 2020, 40(1): 7-18.
MA J X, MA L, WEI C, et al. Dynamic analysis of liquid sloshing in spherical tank based on SPH method[J]. Chinese Space Science and Technology, 2020, 40(1): 7-18.
[16]RUDMAN M, CLEARY P, PRAKASH M. Simulation of liquid sloshing in model LNG tank using smoothed particle hydrodynamics[J]. International Journal of Offshore and Polar Engineering, 2009, 19(4): 286-294.
[17]YANG X F, ZHANG Z Q, YANG J L, et al. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank[J]. Springer Plus, 2016, 5(1): 1573.
[18]杨尚霖, 陈晓峰, 杜发喜, 等. 机动行为下飞机油箱晃动流固耦合动力学分析[J]. 航空学报, 2019, 40(3): 222471.
YANG S L, CHEN X F, DU F X, et al. Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 222471.
[19]赵懿. 液化天然气储罐的抗震与减震研究[D]. 大连: 大连理工大学, 2022.
ZHAO Y. Study on seismic performance and response reduction of liquefied natural gas storage tanks[D]. Dalian: Dalian University of Technology, 2022.
[20]吴作伟, 梁闯, 郭海霞. 基于双向流固耦合的动车组水箱强度分析[J]. 北京交通大学学报, 2012, 36(6): 42-46.
WU Z W, LIANG C, GUO H X. Strength analysis of EMU tank based on two-way fluid-solid interaction[J]. Journal of Beijing Jiaotong University, 2012, 36(6): 42-46.
[21]张锁春. 光滑质点流体动力学(SPH)方法[J]. 计算物理, 1996, 13(4): 385-397.
ZHANG S C. Smooth particle hydrodynamics(SPH)method[J]. Chinese Journal of Computational Physics, 1996, 13(4): 385-397.

Memo

Memo:
-
Last Update: 1900-01-01