|Table of Contents|

Simulation and optimization design of hydrodynamic torque characteristics of ball-type regulating valves(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
53-64
Research Field:
目次
Publishing date:

Info

Title:
Simulation and optimization design of hydrodynamic torque characteristics of ball-type regulating valves
Author(s):
LIANG Wendong12 XU Jian12 LIU Bo1 LI Youzhi1
1.Beijing Aerospace Propulsion Institute, Beijing 100076, China; 2.Laboratory of Science and Technology on Cryogenic Liquid Propulsion of CASC, Beijing 100076, China
Keywords:
regulating valve hydrodynamic torque numerical simulation influence factor optimization design
PACS:
V434
DOI:
10.3969/j.issn.1672-9374.2024.03.006
Abstract:
To obtain the hydrodynamic torque characteristics of the regulating valve used in liquid rocket engines, the Kubota cavitation model and standard k-ε turbulence model are utilized in this paper to numerically investigate the evolution of the flow field in the regulating valve. The numerical simulation results are compared with experimental data to verify the accuracy of the simulation model. The influence factors, distribution characteristics and evolution of hydrodynamic torque are analyzed quantitatively. The results indicate that the hydrodynamic torque depends on the opening, pressure difference and diameter of the flow passage. Under the same pressure difference, when the opening increases from 10 degrees to 80 degrees, the hydrodynamic torque monotonously increases and the direction is to close the valve. Under the same opening, when the pressure difference increases 3 times and 5 times, the hydrodynamic torque changes to about 3 times and 5 times respectively. The hydrodynamic torque distribution consists of the sealing surface moment and main passage moment. With the increase of the opening, the sealing surface moment first decreases and then increases, while the main passage moment first increases and then decreases. When the diameter of the flow passage decreases from 70 mm to 60 mm, the maximum value of hydrodynamic torque increases by 24.5 N·m. This is because under the same working condition, reducing the diameter of the flow passage will increase the valve opening, and the increasing value of the flow passage is greater than the decreasing value of the sealing surface torque. An optimization scheme is proposed to cut off the lower wall of the main channel in the original model, and the hydrodynamic torque of the optimized model is only 13.2 N·m at 100% working conditions. The flow coefficient of the optimized model remains unchanged. The maximum hydrodynamic torque of the optimization model decreases by 94.4 N·m, which greatly reduces the load of the control motor. An important reference is provided for improving the reliability of liquid rocket engines and achieving lightweight.

References:

[1] 陈建华, 曹晨, 徐浩海, 等. 长征五号运载火箭助推动力系统[J]. 推进技术, 2021, 42(7): 1449-1457.
CHEN J H, CAO C, XU H H, et al. Booster stage propulsion system for launch vehicle long March 5[J]. Journal of Propulsion Technology, 2021, 42(7): 1449-1457.
[2]李东, 王珏, 陈士强. 长征五号运载火箭动力系统总体技术分析[J]. 推进技术, 2021, 42(7): 1441-1448.
LI D, WANG J, CHEN S Q. Key technology analysis of CZ-5 launch vehicle propulsion system[J]. Journal of Propulsion Technology, 2021, 42(7): 1441-1448.
[3]王博, 蒋平, 赵骞, 等. 氢氧火箭发动机组件研制阶段可靠性技术综述[J]. 火箭推进, 2021, 47(2): 1-8.
WANG B, JIANG P, ZHAO Q, et al. Review on reliability technology of hydrogen-oxygen rocket engine components in development[J]. Journal of Rocket Propulsion, 2021, 47(2): 1-8.
[4]郑大勇, 王弘亚, 胡骏. 大推力氢氧发动机瞬态特性研究[J]. 推进技术, 2021, 42(8): 1761-1769.
ZHENG D Y, WANG H Y, HU J. Transient characteristics of high-thrust oxygen/hydrogen rocket engine[J]. Journal of Propulsion Technology, 2021, 42(8): 1761-1769.
[5]孙纪国, 郑孟伟, 龚杰峰, 等. 220 tf补燃循环氢氧发动机研制进展[J]. 火箭推进, 2022, 48(2): 11-20.
SUN J G, ZHENG M W, GONG J F, et al. Development of staged combustion cycle LH2/LOX engine with 220 tf thrust[J]. Journal of Rocket Propulsion, 2022, 48(2): 11-20.
[6]郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019, 3(2): 12-17.
ZHENG M W, YUE W L, SUN J G, et al. Discussion on Chinese large-thrust hydrogen/oxygen rocket engine development[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 12-17.
[7]包为民, 汪小卫, 董晓琳. 航班化航天运输系统对动力的发展需求与技术挑战[J]. 火箭推进, 2021, 47(4): 1-5.
BAO W M, WANG X W, DONG X L. Development demands and challenges of propulsion technology for space transportation system in airline-flight-mode[J]. Journal of Rocket Propulsion, 2021, 47(4): 1-5.
[8]邓智勇. 我国商业运载火箭动力路线研究[J]. 中国航天, 2020(5): 43-47.
DENG Z Y. Development of propulsion systems of China's commercial launch vehicle[J]. Aerospace China, 2020(5): 43-47.
[9]郑大勇, 颜勇, 孙纪国. 液氧甲烷发动机重复使用关键技术发展研究[J]. 导弹与航天运载技术, 2018(2): 31-35.
ZHENG D Y, YAN Y, SUN J G. Development study of key reusable technology for LOX/methane engine[J]. Missiles and Space Vehicles, 2018(2): 31-35.
[10]郑大勇, 胡骏. 液氧甲烷发动机点火冲击特性研究[J]. 推进技术, 2021, 42(7): 1553-1560.
ZHENG D Y, HU J. Ignition shock of LOX/methane liquid rocket engine[J]. Journal of Propulsion Technology, 2021, 42(7): 1553-1560.
[11]刘畅. 某型调节阀动态流场仿真及优化分析[D]. 北京: 中国运载火箭技术研究院, 2019.
LIU C. Transient simulation and optimum analysis of regulating valve flow field in liquid rocket engine[D].Beijing: China Academy of Launch Vehicle Technology, 2019.
[12]赵莹, 许健, 张强. 仿真技术在球阀特性研究中的应用[J]. 火箭推进, 2013, 39(6): 29-34.
ZHAO Y, XU J, ZHANG Q. Application of simulation technology in ball valve characteristic study[J]. Journal of Rocket Propulsion, 2013, 39(6): 29-34.
[13]张海平. 纠正一些关于稳态液动力的错误认识[J]. 液压气动与密封, 2010, 30(9): 10-15.
ZHANG H P. Correction for some wrong opinions about flow forces[J]. Hydraulics Pneumatics & Seals, 2010, 30(9): 10-15.
[14]CHERN M J, WANG C C, MA C H. Performance test and flow visualization of ball valve[J]. Experimental Thermal and Fluid Science, 2007, 31(6): 505-512.
[15]CUI B L, LIN Z, ZHU Z C, et al. Influence of opening and closing process of ball valve on external performance and internal flow characteristics[J]. Experimental Thermal and Fluid Science, 2017, 80: 193-202.
[16]SONG X G, KIM S G, BAEK S H, et al. Structural optimization for ball valve made of CF8M stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 258-261.
[17]HAN C J, LI D B, LIU Y. The strength and sealing analysis of high pressure ball valve for natural gas[J]. Advanced Materials Research, 2011, 233/234/235: 2816-2819.
[18]沈新荣, 潘康, 单力钧, 等. 调节型球阀流量特性的数值分析与实验研究[J]. 流体传动与控制, 2008(1): 6-8.
SHEN X R, PAN K, SHAN L J, et al. Numerical analysis and experimental investigation of the control ball valve[J]. Fluid Power Transmission & Control, 2008(1): 6-8.
[19]邵洋, 陈彦, 刘玉萍. 直通式自动控制球阀动水力矩特性分析[J]. 化工自动化及仪表, 2018, 45(6): 445-447.
SHAO Y, CHEN Y, LIU Y P. Characteristic analysis of the hydrodynamic torque of straight-through auto-control ball valves[J]. Control and Instruments in Chemical Industry, 2018, 45(6): 445-447.
[20]张增猛, 王旭, 杨勇, 等. 水压球阀在不同阀口形式下的流体作用力研究[J]. 液压与气动, 2020(6): 7-11.
ZHANG Z M, WANG X, YANG Y, et al. Flow forces of water hydraulic ball valve under different throttle configurations[J]. Chinese Hydraulics & Pneumatics, 2020(6): 7-11.
[21]贾新颖. 液压滑阀稳态液动力特性及补偿优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
JIA X Y. Research on steady flow force characteristics and compensation optimization of hydraulic spool valve[D]. Harbin: Harbin Institute of Technology, 2017.
[22]汤志勇, 曹秉刚, 史维祥. 液压控制阀稳态波动力补偿方法的探讨: 阀套运动法[J]. 机床与液压, 1995, 23(2): 91-95.
TANG Z Y, CAO B G, SHI W X. The inquiring into the corn pensation methodof the steady-state flow forces of the hydraulic control valves: the moving sleeve method[J]. Machine Tool & Hydraulics, 1995, 23(2): 91-95.
[23]王林翔, 章明川, 方志宏. 阀内流道布置对液动力的影响[J]. 机床与液压, 2000, 28(6): 27-28.
WANG L X, ZHANG M C, FANG Z H. Influence of flow passage arrangement in valve on hydraulic force[J]. Machine Tool & Hydraulics, 2000, 28(6): 27-28.
[24]段少帅, 姚平喜, 张恒. 滑阀稳态液动力产生原因与补偿方法[J]. 流体传动与控制, 2010(3): 27-30.
DUAN S S, YAO P X, ZHANG H. Steady-state fluid force of spool valve and its compensation method[J]. Fluid Power Transmission & Control, 2010(3): 27-30.
[25]冀宏, 傅新, 杨华勇. 非全周开口滑阀稳态液动力研究[J]. 机械工程学报, 2003, 39(6): 13-17.
JI H, FU X, YANG H Y. Study on steady flow force of non-circular opeing spool valve[J]. Journal of Mechanical Engineering, 2003, 39(6): 13-17.
[26]郭熛, 解宁, 郭津津, 等. 滑阀液动力研究及结构分析[J]. 液压气动与密封, 2012, 32(4): 11-15.
GUO B, XIE N, GUO J J, et al. Research on flow force of the spool valve and structure analysis[J]. Hydraulics Pneumatics & Seals, 2012, 32(4): 11-15.
[27]张友杰, 李维林. 滑阀稳态液动力补偿方法研究[J]. 黑龙江工业学院学报(综合版), 2018, 18(10): 51-55.
ZHANG Y J, LI W L. Compensation of steady state flow forces in slide valves[J]. Journal of Heilongjiang University of Technology(Comprehensive Edition), 2018, 18(10): 51-55.
[28]李广军, 王彦枝. 偏心半球阀流场数值模拟与分析[J]. 阀门, 2013(2): 33-35.
LI G J, WANG Y Z. Numerical simulation and analysis on flow in eccentric hemisphere valve[J]. Valve, 2013(2): 33-35.
[29]王国玉, 霍毅, 张博, 等. 湍流模型在轴流泵性能预测中的应用与评价[J]. 北京理工大学学报, 2009, 29(4): 309-313.
WANG G Y, HUO Y, ZHANG B, et al. Evaluation of turbulence models for predicting the performance of an axial-flow pump[J]. Transactions of Beijing Institute of Technology, 2009, 29(4): 309-313.
[30]黄彪, 王国玉, 张博, 等. FBM湍流模型在云状空化流动数值计算中的应用与评价[J]. 机械工程学报, 2010, 46(8): 147-153.
HUANG B, WANG G Y, ZHANG B, et al. Evaluation and application of filter based turbulence model for computations of cloud cavitating flows[J]. Journal of Mechanical Engineering, 2010, 46(8): 147-153.
[31]李琳, 刘存良, 杨祺, 等. 微细管道内R141b沸腾气液两相流动与换热特性数值仿真[J]. 推进技术, 2018, 39(4): 802-809.
LI L, LIU C L, YANG Q, et al. Numerical simulations on two-phase boiling flow and heat transfer of refrigerant R141b in micro/mini-channel[J]. Journal of Propulsion Technology, 2018, 39(4): 802-809.
[32]LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
[33]黄彪, 吴钦, 王国玉. 非定常空化流动研究现状与进展[J]. 排灌机械工程学报, 2018, 36(1): 1-14.
HUANG B, WU Q, WANG G Y. Progress and prospects of investigation into unsteady cavitating flows[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(1): 1-14.
[34]季斌,程怀玉,黄彪,等.空化水动力学非定常特性研究进展及展望[J].力学进展,2019,49(6):428-479.
JI B, CHENG H Y, HUANG B, et al. Research progress and prospects on unsteady characterist of cavitation hydrodynamics[J]. Advances in Mechanics, 2019,49(6):428-479.
[35]王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展[J]. 力学进展, 2018, 48(1): 259-298.
WANG Y W, HUANG C G. Research progress on hydrodynamics of high speed vehicles in the underwater launching process[J]. Advances in Mechanics, 2018, 48(1): 259-298.
[36]黄彪, 王国玉, 张博, 等. 空化模型在非定常空化流动计算的应用评价与分析[J]. 船舶力学, 2011, 15(11): 1195-1202.
HUANG B, WANG G Y, ZHANG B, et al. Assessment of cavitation models for computation of unsteady cavitating flows[J]. Journal of Ship Mechanics, 2011, 15(11): 1195-1202.
[37]KUBOTA A, KATO H, YAMAGUCHI H, et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1989, 111(2): 204-210.
[38]梁文栋, 王国玉, 黄彪, 等. 液氮空化流动的实验和数值计算研究[J]. 工程热物理学报, 2019, 40(10): 2299-2304.
LIANG W D, WANG G Y, HUANG B, et al. Experimental and numerical simulation of cavitating flows in liquid nitrogen[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2299-2304.
[39]贝科夫.液压系统用球阀[M]. 章华友,译.北京: 第一机械工业部通用机械研究所, 1972.

Memo

Memo:
-
Last Update: 1900-01-01