[1] 陈建华, 曹晨, 徐浩海, 等. 长征五号运载火箭助推动力系统[J]. 推进技术, 2021, 42(7): 1449-1457.
CHEN J H, CAO C, XU H H, et al. Booster stage propulsion system for launch vehicle long March 5[J]. Journal of Propulsion Technology, 2021, 42(7): 1449-1457.
[2]李东, 王珏, 陈士强. 长征五号运载火箭动力系统总体技术分析[J]. 推进技术, 2021, 42(7): 1441-1448.
LI D, WANG J, CHEN S Q. Key technology analysis of CZ-5 launch vehicle propulsion system[J]. Journal of Propulsion Technology, 2021, 42(7): 1441-1448.
[3]王博, 蒋平, 赵骞, 等. 氢氧火箭发动机组件研制阶段可靠性技术综述[J]. 火箭推进, 2021, 47(2): 1-8.
WANG B, JIANG P, ZHAO Q, et al. Review on reliability technology of hydrogen-oxygen rocket engine components in development[J]. Journal of Rocket Propulsion, 2021, 47(2): 1-8.
[4]郑大勇, 王弘亚, 胡骏. 大推力氢氧发动机瞬态特性研究[J]. 推进技术, 2021, 42(8): 1761-1769.
ZHENG D Y, WANG H Y, HU J. Transient characteristics of high-thrust oxygen/hydrogen rocket engine[J]. Journal of Propulsion Technology, 2021, 42(8): 1761-1769.
[5]孙纪国, 郑孟伟, 龚杰峰, 等. 220 tf补燃循环氢氧发动机研制进展[J]. 火箭推进, 2022, 48(2): 11-20.
SUN J G, ZHENG M W, GONG J F, et al. Development of staged combustion cycle LH2/LOX engine with 220 tf thrust[J]. Journal of Rocket Propulsion, 2022, 48(2): 11-20.
[6]郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019, 3(2): 12-17.
ZHENG M W, YUE W L, SUN J G, et al. Discussion on Chinese large-thrust hydrogen/oxygen rocket engine development[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 12-17.
[7]包为民, 汪小卫, 董晓琳. 航班化航天运输系统对动力的发展需求与技术挑战[J]. 火箭推进, 2021, 47(4): 1-5.
BAO W M, WANG X W, DONG X L. Development demands and challenges of propulsion technology for space transportation system in airline-flight-mode[J]. Journal of Rocket Propulsion, 2021, 47(4): 1-5.
[8]邓智勇. 我国商业运载火箭动力路线研究[J]. 中国航天, 2020(5): 43-47.
DENG Z Y. Development of propulsion systems of China's commercial launch vehicle[J]. Aerospace China, 2020(5): 43-47.
[9]郑大勇, 颜勇, 孙纪国. 液氧甲烷发动机重复使用关键技术发展研究[J]. 导弹与航天运载技术, 2018(2): 31-35.
ZHENG D Y, YAN Y, SUN J G. Development study of key reusable technology for LOX/methane engine[J]. Missiles and Space Vehicles, 2018(2): 31-35.
[10]郑大勇, 胡骏. 液氧甲烷发动机点火冲击特性研究[J]. 推进技术, 2021, 42(7): 1553-1560.
ZHENG D Y, HU J. Ignition shock of LOX/methane liquid rocket engine[J]. Journal of Propulsion Technology, 2021, 42(7): 1553-1560.
[11]刘畅. 某型调节阀动态流场仿真及优化分析[D]. 北京: 中国运载火箭技术研究院, 2019.
LIU C. Transient simulation and optimum analysis of regulating valve flow field in liquid rocket engine[D].Beijing: China Academy of Launch Vehicle Technology, 2019.
[12]赵莹, 许健, 张强. 仿真技术在球阀特性研究中的应用[J]. 火箭推进, 2013, 39(6): 29-34.
ZHAO Y, XU J, ZHANG Q. Application of simulation technology in ball valve characteristic study[J]. Journal of Rocket Propulsion, 2013, 39(6): 29-34.
[13]张海平. 纠正一些关于稳态液动力的错误认识[J]. 液压气动与密封, 2010, 30(9): 10-15.
ZHANG H P. Correction for some wrong opinions about flow forces[J]. Hydraulics Pneumatics & Seals, 2010, 30(9): 10-15.
[14]CHERN M J, WANG C C, MA C H. Performance test and flow visualization of ball valve[J]. Experimental Thermal and Fluid Science, 2007, 31(6): 505-512.
[15]CUI B L, LIN Z, ZHU Z C, et al. Influence of opening and closing process of ball valve on external performance and internal flow characteristics[J]. Experimental Thermal and Fluid Science, 2017, 80: 193-202.
[16]SONG X G, KIM S G, BAEK S H, et al. Structural optimization for ball valve made of CF8M stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 258-261.
[17]HAN C J, LI D B, LIU Y. The strength and sealing analysis of high pressure ball valve for natural gas[J]. Advanced Materials Research, 2011, 233/234/235: 2816-2819.
[18]沈新荣, 潘康, 单力钧, 等. 调节型球阀流量特性的数值分析与实验研究[J]. 流体传动与控制, 2008(1): 6-8.
SHEN X R, PAN K, SHAN L J, et al. Numerical analysis and experimental investigation of the control ball valve[J]. Fluid Power Transmission & Control, 2008(1): 6-8.
[19]邵洋, 陈彦, 刘玉萍. 直通式自动控制球阀动水力矩特性分析[J]. 化工自动化及仪表, 2018, 45(6): 445-447.
SHAO Y, CHEN Y, LIU Y P. Characteristic analysis of the hydrodynamic torque of straight-through auto-control ball valves[J]. Control and Instruments in Chemical Industry, 2018, 45(6): 445-447.
[20]张增猛, 王旭, 杨勇, 等. 水压球阀在不同阀口形式下的流体作用力研究[J]. 液压与气动, 2020(6): 7-11.
ZHANG Z M, WANG X, YANG Y, et al. Flow forces of water hydraulic ball valve under different throttle configurations[J]. Chinese Hydraulics & Pneumatics, 2020(6): 7-11.
[21]贾新颖. 液压滑阀稳态液动力特性及补偿优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
JIA X Y. Research on steady flow force characteristics and compensation optimization of hydraulic spool valve[D]. Harbin: Harbin Institute of Technology, 2017.
[22]汤志勇, 曹秉刚, 史维祥. 液压控制阀稳态波动力补偿方法的探讨: 阀套运动法[J]. 机床与液压, 1995, 23(2): 91-95.
TANG Z Y, CAO B G, SHI W X. The inquiring into the corn pensation methodof the steady-state flow forces of the hydraulic control valves: the moving sleeve method[J]. Machine Tool & Hydraulics, 1995, 23(2): 91-95.
[23]王林翔, 章明川, 方志宏. 阀内流道布置对液动力的影响[J]. 机床与液压, 2000, 28(6): 27-28.
WANG L X, ZHANG M C, FANG Z H. Influence of flow passage arrangement in valve on hydraulic force[J]. Machine Tool & Hydraulics, 2000, 28(6): 27-28.
[24]段少帅, 姚平喜, 张恒. 滑阀稳态液动力产生原因与补偿方法[J]. 流体传动与控制, 2010(3): 27-30.
DUAN S S, YAO P X, ZHANG H. Steady-state fluid force of spool valve and its compensation method[J]. Fluid Power Transmission & Control, 2010(3): 27-30.
[25]冀宏, 傅新, 杨华勇. 非全周开口滑阀稳态液动力研究[J]. 机械工程学报, 2003, 39(6): 13-17.
JI H, FU X, YANG H Y. Study on steady flow force of non-circular opeing spool valve[J]. Journal of Mechanical Engineering, 2003, 39(6): 13-17.
[26]郭熛, 解宁, 郭津津, 等. 滑阀液动力研究及结构分析[J]. 液压气动与密封, 2012, 32(4): 11-15.
GUO B, XIE N, GUO J J, et al. Research on flow force of the spool valve and structure analysis[J]. Hydraulics Pneumatics & Seals, 2012, 32(4): 11-15.
[27]张友杰, 李维林. 滑阀稳态液动力补偿方法研究[J]. 黑龙江工业学院学报(综合版), 2018, 18(10): 51-55.
ZHANG Y J, LI W L. Compensation of steady state flow forces in slide valves[J]. Journal of Heilongjiang University of Technology(Comprehensive Edition), 2018, 18(10): 51-55.
[28]李广军, 王彦枝. 偏心半球阀流场数值模拟与分析[J]. 阀门, 2013(2): 33-35.
LI G J, WANG Y Z. Numerical simulation and analysis on flow in eccentric hemisphere valve[J]. Valve, 2013(2): 33-35.
[29]王国玉, 霍毅, 张博, 等. 湍流模型在轴流泵性能预测中的应用与评价[J]. 北京理工大学学报, 2009, 29(4): 309-313.
WANG G Y, HUO Y, ZHANG B, et al. Evaluation of turbulence models for predicting the performance of an axial-flow pump[J]. Transactions of Beijing Institute of Technology, 2009, 29(4): 309-313.
[30]黄彪, 王国玉, 张博, 等. FBM湍流模型在云状空化流动数值计算中的应用与评价[J]. 机械工程学报, 2010, 46(8): 147-153.
HUANG B, WANG G Y, ZHANG B, et al. Evaluation and application of filter based turbulence model for computations of cloud cavitating flows[J]. Journal of Mechanical Engineering, 2010, 46(8): 147-153.
[31]李琳, 刘存良, 杨祺, 等. 微细管道内R141b沸腾气液两相流动与换热特性数值仿真[J]. 推进技术, 2018, 39(4): 802-809.
LI L, LIU C L, YANG Q, et al. Numerical simulations on two-phase boiling flow and heat transfer of refrigerant R141b in micro/mini-channel[J]. Journal of Propulsion Technology, 2018, 39(4): 802-809.
[32]LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
[33]黄彪, 吴钦, 王国玉. 非定常空化流动研究现状与进展[J]. 排灌机械工程学报, 2018, 36(1): 1-14.
HUANG B, WU Q, WANG G Y. Progress and prospects of investigation into unsteady cavitating flows[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(1): 1-14.
[34]季斌,程怀玉,黄彪,等.空化水动力学非定常特性研究进展及展望[J].力学进展,2019,49(6):428-479.
JI B, CHENG H Y, HUANG B, et al. Research progress and prospects on unsteady characterist of cavitation hydrodynamics[J]. Advances in Mechanics, 2019,49(6):428-479.
[35]王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展[J]. 力学进展, 2018, 48(1): 259-298.
WANG Y W, HUANG C G. Research progress on hydrodynamics of high speed vehicles in the underwater launching process[J]. Advances in Mechanics, 2018, 48(1): 259-298.
[36]黄彪, 王国玉, 张博, 等. 空化模型在非定常空化流动计算的应用评价与分析[J]. 船舶力学, 2011, 15(11): 1195-1202.
HUANG B, WANG G Y, ZHANG B, et al. Assessment of cavitation models for computation of unsteady cavitating flows[J]. Journal of Ship Mechanics, 2011, 15(11): 1195-1202.
[37]KUBOTA A, KATO H, YAMAGUCHI H, et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1989, 111(2): 204-210.
[38]梁文栋, 王国玉, 黄彪, 等. 液氮空化流动的实验和数值计算研究[J]. 工程热物理学报, 2019, 40(10): 2299-2304.
LIANG W D, WANG G Y, HUANG B, et al. Experimental and numerical simulation of cavitating flows in liquid nitrogen[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2299-2304.
[39]贝科夫.液压系统用球阀[M]. 章华友,译.北京: 第一机械工业部通用机械研究所, 1972.