[1] 岳文龙, 郑大勇, 颜勇, 等. 我国高性能液氧液氢发动机技术发展概述[J]. 中国航天, 2021(10): 20-25.
YUE W L, ZHENG D Y, YAN Y, et al. Overiew of technical development of high performance LOX/LH2 in China[J]. Aerospace China, 2021(10): 20-25.
[2]金平, 蔡国飙. 全流量补燃循环发动机及其特点[J]. 火箭推进, 2003, 29(4): 43-47.
JIN P, CAI G B. FFSC engine and its characteristics[J]. Journal of Rocket Propulsion, 2003, 29(4): 43-47.
[3]孙纪国, 岳文龙. 我国大推力补燃氢氧发动机研究进展[J]. 上海航天, 2019, 36(6): 19-23.
SUN J G, YUE W L. Advances of large-thrust staged combustion cycle hydrogen/oxygen rocket engine in China[J]. Aerospace Shanghai, 2019, 36(6): 19-23.
[4]郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019, 3(2): 12-17.
ZHENG M W, YUE W L, SUN J G, et al. Discussion on Chinese large-thrust hydrogen/oxygen rocket engine development[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 12-17.
[5]杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018, 44(3): 16-22.
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(3): 16-22.
[6]周帅, 林磊, 杜大华, 等. 液体火箭发动机对接焊管道振动疲劳性能研究[J]. 火箭推进, 2021, 47(3): 90-97.
ZHOU S, LIN L, DU D H, et al. Study on vibration fatigue of butt welded pipe of liquid rocket engine[J]. Journal of Rocket Propulsion, 2021, 47(3): 90-97.
[7]ZHANG W. Failure characteristics analysis and fault diagnosis for liquid rocket engines [M]. Berlin: Springer, 2016.
[8]ROUSE J P, SUN W, HYDE T H, et al. A method to approximate the steady-state creep response of three-dimensional pipe bend finite element models under internal pressure loading using two-dimensional axisymmetric models[J]. Journal of Pressure Vessel Technology, 2014, 136(1): 011402.
[9]崔海涛, 温卫东, 佟丽莉. 纤维缠绕复合材料弯管强度分析[J]. 宇航材料工艺, 2003, 33(6): 39-42.
CUI H T, WEN W D, TONG L L. Strength analysis of filament-wound pipe[J]. Aerospace Materials & Technology, 2003, 33(6): 39-42.
[10]WEBER J, KLENK A, RIEKE M. A new method of strength calculation and lifetime prediction of pipe bends operating in the creep range[J]. International Journal of Pressure Vessels and Piping, 2005, 82(2): 77-84.
[11]王开明, 方雯, 王卫国. 航空发动机支点刚度与整机变形分析方法[J]. 燃气涡轮试验与研究, 2018, 31(4): 30-36.
WANG K M, FANG W, WANG W G. A method for evaluating bearing support stiffness and whole engine deformation[J]. Gas Turbine Experiment and Research, 2018, 31(4): 30-36.
[12]陈晓豫, 钱文清, 鲍益东, 等. 飞机管路强度快速分析方法[J]. 航空制造技术, 2020, 63(21): 85-91.
CHEN X Y, QIAN W Q, BAO Y D, et al. Rapid analysis method of strength for aircraft pipeline[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 85-91.
[13]YOO J, JEON S M. Static and dynamic structural analyses for a 750 kN class liquid rocket engine with TVC actuation[J]. CEAS Space Journal, 2020, 12(3): 331-341.
[14]TANI N, YAMANISHI N, KUROSU A. An end-to-end high fidelity numerical simulation of the LE-X engine[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[15]王帅, 张明明, 刘桢, 等. 预载荷作用下管路结构动强度评估方法[J]. 北京航空航天大学学报, 2016, 42(4): 745-750.
WANG S, ZHANG M M, LIU Z, et al. Dynamic strength valuation method of pipeline structures under preload[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 745-750.
[16]王帅, 荣克林, 李佰灵, 等. 航天飞行器管路结构的动力学强度分析与试验[J]. 中国科学: 物理学 力学 天文学, 2019, 49(2): 93-100.
WANG S, RONG K L, LI B L, et al. Dynamics strength analysis and test for pipe structures of aerospacecrafts[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2019, 49(2): 93-100.
[17]李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864.
[18]叶增荣. 基于MPC简化模型的非对称换热器有限元分析[J]. 压力容器, 2017, 34(5): 38-45.
YE Z R. Finite element analysis of non-axisymmetric heat exchanger based on MPC simplified model[J]. Pressure Vessel Technology, 2017, 34(5): 38-45.
[19]张霁, 翟晓, 刘兵, 等. 固体发动机静强度试验应变数据的分析与处理[J]. 测控技术, 2016, 35(9): 36-39.
ZHANG J, ZHAI X, LIU B, et al. Analysis and processing of strain measurement data of solid rocket motor[J]. Measurement & Control Technology, 2016, 35(9): 36-39.
[20]中国航天工业总公司. 液体火箭发动机应变测量方法: QJ 2967—97 [S]. 北京:中国航天工业总公司, 1997.