|Table of Contents|

Experimental investigation on calorific value of HTPB propellant based on high temperature accelerated aging test(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
102-107
Research Field:
目次
Publishing date:

Info

Title:
Experimental investigation on calorific value of HTPB propellant based on high temperature accelerated aging test
Author(s):
CHANG Jian LAI Jianwei WANG Bin SONG Mengkun
Ordnance Engineering College, Naval University of Engineering, Wuhan 430034, China
Keywords:
propellant heat aging calorific value mass loss ratio
PACS:
V512
DOI:
10.3969/j.issn.1672-9374.2024.03.011
Abstract:
HTPB propellant as the fuel of solid motor, has excellent mechanical and ballistic properties which is the main propellant used in countries around the world for a long time. The study of HTPB propellant accelerated aging performance at high temperature is of great significance to master the storage conditions of HTPB propellant, analyze the aging mechanism and predict the storage period. The effects of each component on the combustion performance for the composite solid propellant during the aging process are analyzed, namely the effects on the combustion calorific value of the propellant. By testing the calorific value of HTPB propellant with different aging degrees, the variation law of calorific value for HTPB propellant after aging is obtained, and the relationship between the calorific value of HTPB propellant and aging temperature and time is fitted.

References:

[1] 马帅, 郭健鑫, 周磊, 等. 固体火箭发动机技术发展综述[J]. 火箭推进, 2023, 49(2): 1-14.
MA S, GUO J X, ZHOU L, et al. Review on technology development of solid rocket motor[J]. Journal of Rocket Propulsion, 2023, 49(2): 1-14.
[2]胡松启, 周宴星, 刘迎吉, 等. 固体推进剂裂纹扩展研究综述[J]. 火箭推进, 2012, 38(5): 86-92.
HU S Q, ZHOU Y X, LIU Y J, et al. Studies on crack extension in solid propellant[J]. Journal of Rocket Propulsion, 2012, 38(5): 86-92.
[3]CELINA M, MINIER L, ASSINK R. Development and application of tools to characterize the oxidative degradation of AP/HTPB/Al propellants in a propellant reliability study[J]. Thermochimica Acta, 2002, 384(1/2): 343-349.
[4]孙兵晓, 常新龙, 胡成荣, 等. 固体火箭发动机密封结构随机有限元可靠性分析[J]. 火箭推进, 2008, 34(5): 22-26.
SUN B X, CHANG X L, HU C R, et al. Reliability analysis of the SRM sealing structure based on stochastic finite element method[J]. Journal of Rocket Propulsion, 2008, 34(5): 22-26.
[5]张晓军, 邢鹏涛, 朱佳佳, 等. HTPB推进剂老化性能湿热影响分析[J]. 装备环境工程, 2022, 19(2): 45-50.
ZHANG X J, XING P T, ZHU J J, et al. Analysis of the effect of humidity and heat on aging performance of HTPB propellant[J]. Equipment Environmental Engineering, 2022, 19(2): 45-50.
[6]霍文龙, 谢丽娜, 孙雪莹, 等. 固体推进剂老化过程影响因素及化学反应机理研究进展[J]. 装备环境工程, 2023, 20(10): 64-76.
HUO W L, XIE L N, SUN X Y, et al. Affecting factors and chemical reaction mechanism of composite solid propellants during the aging process[J]. Equipment Environmental Engineering, 2023, 20(10): 64-76.
[7]赵永俊, 张兴高, 张炜, 等. 国外固体推进剂及其黏结界面贮存老化研究进展[J]. 火箭推进, 2008, 34(3): 35-38.
ZHAO Y J, ZHANG X G, ZHANG W, et al. Review on the aging property of solid propellant and bonding interface abroad[J]. Journal of Rocket Propulsion, 2008, 34(3): 35-38.
[8]中国航天科工集团公司.复合固体推进剂高温加速老化试验方法: QJ 2328A—2005[S].北京:国防科学技术工业委员会,2005.
[9]程吉明, 李进贤, 侯晓, 等. HTPB推进剂热力耦合老化力学性能研究[J]. 推进技术, 2016, 37(10): 1984-1990.
CHENG J M, LI J X, HOU X, et al. Aging mechanical properties of HTPB propellant under thermal-mechanical coupled condition[J]. Journal of Propulsion Technology, 2016, 37(10): 1984-1990.
[10]曾毅, 黄薇, 陈家兴, 等. HTPB推进剂热力耦合加速老化细观损伤机理分析[J]. 含能材料, 2024, 32(2): 162-174.
ZENG Y, HUANG W, CHEN J X, et al. Analysis of mesoscopic damage mechanism of HTPB propellant under thermo-mechanical coupled accelerated aging[J]. Chinese Journal of Energetic Materials, 2024, 32(2): 162-174.
[11]张兴高. HTPB推进剂贮存老化特性及寿命预估研究[D]. 长沙: 国防科学技术大学, 2009.
ZHANG X G. Study on the aging properties and storage life prediction of htpb propellant[D]. Changsha: National University of Defense Technology, 2009.
[12]LI H, WEI J, ZHANG Y N, et al. GO/HTPB composite liner for anti-migration of small molecules[J]. Defence Technology, 2023, 22: 156-165.
[13]李彦荣, 祝世杰, 刘学, 等. 高氯酸铵热分解机理研究进展[J]. 化学推进剂与高分子材料, 2015, 13(1): 32-37.
LI Y R, ZHU S J, LIU X, et al. Research progress in thermal decomposition mechanism of ammonium perchlorate[J]. Chemical Propellants & Polymeric Materials, 2015, 13(1): 32-37.
[14]LI Y B, PAN L P, YANG Z J, et al. The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX[J]. Defence Technology, 2017, 13(6): 422-427.
[15]GUILLORY W A, KING M. Thermal decomposition of ammonium perchlorate[J]. AIAA Journal, 1970, 8(6): 1134-1136.
[16]池旭辉, 彭松, 赵程远, 等. 复合固体推进剂高温加速试验理论与方法(1): Arrhenius方程的适用性[J]. 含能材料, 2022, 30(8): 853-860.
CHI X H, PENG S, ZHAO C Y, et al. Theories and methodology of high temperature accelerated test for composite solid propellants(Ⅰ): The applicability of Arrhenius equation[J]. Chinese Journal of Energetic Materials, 2022, 30(8): 853-860.
[17]LU X, CHEN X, WANG Y S, et al. Molecular dynamics simulation of gas transport in amorphous polyiso-prene[EB/OL]. [2024-01-02]. https://en.cnki.com.cn/Article_en/CJFDTotal-WLHX201610018.htm, 2016.
[18]张昊, 彭松, 庞爱民, 等. NEPE推进剂力学性能与化学安定性关联老化行为及机理[J]. 推进技术, 2007, 28(3): 327-332.
ZHANG H, PENG S, PANG A M, et al. Coupling aging behaviors and mechanism between mechanical properties and chemical stability of NEPE propellant[J]. Journal of Propulsion Technology, 2007, 28(3): 327-332.

Memo

Memo:
-
Last Update: 1900-01-01