|Table of Contents|

Design of high-temperature vacuum fiber optic absolute pressure sensor for near-space vehicles(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
118-123
Research Field:
目次
Publishing date:

Info

Title:
Design of high-temperature vacuum fiber optic absolute pressure sensor for near-space vehicles
Author(s):
ZHANG Yutong123 JIANG Yi12 YANG Shuiwang4 ZHANG Dayou5
1.School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; 2.Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing 100081, China; 3.School of Physical Science and Technology, Baotou Teachers' College, Baotou 014030, China; 4.Beijing Zhenxing Institute of Metrology and Measurement, Beijing 100074, China; 5.Beijing Aerospace Institute for Metrology and Measurement Technology, Beijing 100076, China
Keywords:
optical fiber pressure sensors extrinsic Fabry-Perot interferometer sapphire wafer absolute pressure measurement
PACS:
TP212
DOI:
10.3969/j.issn.1672-9374.2024.03.013
Abstract:
A sapphire-based extrinsic Fabry-Perot interferometer(EFPI)fiber optic absolute pressure sensor for near-space vehicles in high-temperature environment is developed and experimentally demonstrated. The sapphire wafer sensor head is composed of three sapphire wafers with different thicknesses bonded to form composite Fabry-Perot(FP)cavities, which can realize the simultaneous measurement of temperature and absolute pressure. By monitoring the temperature in real time, the pressure measurement is compensated to eliminate the influence of temperature on the pressure measurement. Experiment results show that the optical cavity length of the sealed FP cavity varies linearly within the applied pressure at each temperature point below 900 ℃. At room temperature, the pressure sensitivity is 11.6 nm/kPa and increases slightly with the increase of temperature. The resolution of the pressure measurement is 86 Pa.

References:

[1] 王珺, 吕海鑫, 陈景龙, 等. 液体火箭发动机健康状态智能检测方法[J]. 火箭推进, 2021, 47(4): 52-58.
WANG J, LYU H X, CHEN J L, et al. Intelligent detection method of liquid rocket engine health state[J]. Journal of Rocket Propulsion, 2021, 47(4): 52-58.
[2]陈海峰, 邝奇, 翟文化, 等. 液体火箭发动机试验脉动压力测量技术研究[J]. 火箭推进, 2016, 42(5): 104-109.
CHEN H F, KUANG Q, ZHAI W H, et al. Research on detection technology of fluctuating pressure in liquid rocket engine test[J]. Journal of Rocket Propulsion, 2016, 42(5): 104-109.
[3]RAJAN G. Optical fiber sensors: Advanced techniques and applications[M]. Boca Raton,FL: CRC Press, 2017.
[4]DU Y L, SUN B C, LI J Z, et al. Optical fiber sensing and structural health monitoring technology[M]. Berlin: Springer, 2019.
[5]MURPHY K A, KOOB C E, PLANTE A J, et al. High-temperature sensing applications of silica and sapphire optical fibers[C]// Fiber Optic Smart Structures and Skins III.[S.l.]:SPIE,1990.
[6]LEE C E, ATKINS R A, TAYLOR H F. Performance of a fiber-optic temperature sensor from-200 to 1050 ℃[J]. Optics Letters, 1988, 13(11): 1038-1040.
[7]郭煜恩, 谭跃刚, 吕文强. 双F-P型高温/应变复合光纤传感器[J]. 传感技术学报, 2023, 36(2): 198-203.
GUO Y E, TAN Y G, LYU W Q. Dual F-P high temperature/strain composite optical fiber sensor[J]. Chinese Journal of Sensors and Actuators, 2023, 36(2): 198-203.
[8]赵贤, 王永杰, 李慧聪, 等. 基于飞秒光纤光栅的高温FBG传感器阵列[J]. 激光与光电子学进展, 2023, 60(11): 350-355.
ZHAO X, WANG Y J, LI H C, et al. High-temperature fiber Bragg grating sensor array based on femtosecond fiber grating[J]. Laser & Optoelectronics Progress, 2023, 60(11): 350-355.
[9]张柳超, 江毅, 王素梅, 等. 基于飞秒激光加工的微纳高温光纤振动传感器[J]. 光学技术, 2017, 43(4): 334-338.
ZHANG L C, JIANG Y, WANG S M, et al. A micro fiber optic vibration sensor fabricated by femtosecond laser for high temperature applications[J]. Optical Technique, 2017, 43(4): 334-338.
[10]HE H Y, LIU Y, LIAO Y Y, et al. Simple fiber-optic sensor for simultaneous and sensitive measurement of high pressure and high temperature based on the silica capillary tube[J]. Optics Express, 2019, 27(18): 25777-25788.
[11]GUO H Y, CHEN J, TIAN Z M, et al. A high temperature solid pressure sensor based on fiber Bragg grating[J]. Symmetry, 2021, 13(11): 2098.
[12]YUAN S F, ANSARI F, LIU X H, et al. Optic fiber-based dynamic pressure sensor for WIM system[J]. Sensors and Actuators A: Physical, 2005, 120(1): 53-58.
[13]LIU Y, LIN H F, DAI Y T, et al. Fiber in-line Mach-Zehnder interferometer for gas pressure sensing[J]. IEEE Sensors Journal, 2018, 18(19): 8012-8016.
[14]LIU G G, HAN M. Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer[J]. Optics Letters, 2015, 40(11): 2461-2464.
[15]YOSHINO T, KUROSAWA K, ITOH K, et al. Fiber-optic Fabry-Perot interferometer and its sensor applications[J]. IEEE Journal of Quantum Electronics, 1982, 18(10): 1624-1633.
[16]李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学, 2022, 15(4): 609-624.
LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624.
[17]王宁, 朱永, 张洁. 高温高压环境下光纤法布里-珀罗传感技术研究现状[J]. 激光与光电子学进展, 2023, 60(11): 61-73.
WANG N, ZHU Y, ZHANG J. Research status of fiber fabry-perot sensing technology under high temperature and high pressure environment[J]. Laser & Optoelectronics Progress, 2023, 60(11): 61-73.
[18]GAO H C, JIANG Y, CUI Y, et al. Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure[J]. IEEE Sensors Journal, 2018, 18(24): 10028-10033.
[19]何俊, 徐锡镇, 贺佳, 等. 蓝宝石光纤光栅高温传感器研究进展与发展趋势[J]. 红外与激光工程, 2022, 51(10): 11-33.
HE J, XU X Z, HE J, et al. Research progress and development tendency of sapphire fiber Bragg grating-based high-temperature sensors[J]. Infrared and Laser Engineering, 2022, 51(10): 11-33.
[20]FENG X X, JIANG Y, GAO H C, et al. Diaphragm-free gas pressure sensor based on all-sapphire fiber Fabry-Perot interferometers[J]. Applied Optics, 2022, 61(22): 6584-6589.
[21]YI J, LALLY E, WANG A B, et al. Demonstration of an all-sapphire Fabry-Perot cavity for pressure sensing[J]. IEEE Photonics Technology Letters, 2011, 23(1): 9-11.
[22]YI J. Sapphire Fabry-Perot pressure sensor at high temperature[J]. IEEE Sensors Journal, 2021, 21(2): 1596-1602.
[23]LI W W, LIANG T, JIA P G, et al. Fiber-optic Fabry-Perot pressure sensor based on sapphire direct bonding for high-temperature applications[J]. Applied Optics, 2019, 58(7): 1662-1666.
[24]SHAO Z Q, WU Y L, WANG S, et al. All-sapphire fiber-optic pressure sensors for extreme harsh environments[J]. Optics Express, 2022, 30(3): 3665-3674.
[25]CUI Y, JIANG Y, ZHANG Y T, et al. Sapphire optical fiber high-temperature vibration sensor[J]. Optics Express, 2022, 30(2): 1056-1065.
[26]FENG X X, JIANG Y, XIE S R, et al. Higher-order mode suppression technique for multimode sapphire fiber external Fabry-Perot interferometers[J]. Optics Express, 2022, 30(4): 4759.
[27]FENG X X, JIANG Y, XIE S R, et al. Signal pick-up technique for sapphire fiber external fabry-perot interferometer using tapered multimode fibers[J]. Journal of Lightwave Technology, 2022, 40(12): 3992-3996.
[28]ZHANG Y T, JIANG Y. An all-sapphire fiber diaphragm-free extrinsic Fabry-Perot interferometric sensor for the measurement of gas pressure at ultrahigh temperature[J]. IEEE Sensors Journal, 2023, 23(6): 5818-5823.
[29]ZHANG Y T, JIANG Y, DENG H, et al. All-sapphire-based optical fiber pressure sensor with an ultra-wide pressure range based on femtosecond laser micromachining and direct bonding[J]. Optics Express, 2023, 31(25): 41967-41978.
[30]JIANG Y. High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method[J]. Applied Optics, 2008, 47(7): 925-932.
[31]JIANG Y. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors[J]. IEEE Photonics Technology Letters, 2008, 20(2): 75-77.

Memo

Memo:
-
Last Update: 1900-01-01