|Table of Contents|

Phased array ultrasonic inspection technology of weld seam for bottom-locking structure(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
124-130
Research Field:
目次
Publishing date:

Info

Title:
Phased array ultrasonic inspection technology of weld seam for bottom-locking structure
Author(s):
ZHAO Can YAN Mingwei WANG Jianchao LIU Weichao ZHANG Rui WANG Yonghong
Xi'an Space Engine Company Limited, Xi'an 710100, China
Keywords:
phased array ultrasonic bottom-locking weld signal detection
PACS:
TG115.28
DOI:
10.3969/j.issn.1672-9374.2024.03.014
Abstract:
Phased array ultrasonic inspection technology was carried out for the X-ray undetectable welds of bottom-locking structures. Through the simulation analysis of phased array ultrasonic sound lines and sound fields, a reasonable scanning method was determined. The signal-to-noise ratio and defect response between 4.0 MHz and 7.5 MHz probes were compared. The results show that the detection resolution and defect size measurement accuracy of high-frequency probe are relatively high. For coarse-grained materials, low-frequency probe has a higher defect detection rate than high-frequency probe. By comparing the resutls of ultrasonic, radiographic and section metallographic, the influence of the bottom-locking structure on the echo signal was investigated and the method of identifying incomplete penetration signals was obtained. The process verification experiment was carried out by using welding simulation samples. The results show that the phased array ultrasonic technology can effectively detect all the defects except the non-fusion of the opp osite side groove, and the quantitative results are basically consistent with the X-ray detection. The detection process obtained in this study has been used to complete the detection and verification of multiple products, which provides an effective reference for continuous optimization of welding methods and improvement the joint groove forms.

References:

[1] 同立军. 液体火箭发动机制造工艺技术[M]. 北京: 中国宇航出版社, 2021.
[2]王英杰, 杨卫鹏. 表面张力贮箱电子束焊接工艺研究[J]. 火箭推进, 2016, 42(5): 82-87.
WANG Y J, YANG W P. Research on electron-beam welding of surface tension tank[J]. Journal of Rocket Propulsion, 2016, 42(5): 82-87.
[3]杨瑞康, 张勤练, 周舟, 等. 推力室外壁机器人自适应焊接控制研究[J]. 火箭推进, 2019, 45(1): 66-72.
YANG R K, ZHANG Q L, ZHOU Z, et al. Research on robot adaptive welding control of thrust chamber outer wall[J]. Journal of Rocket Propulsion, 2019, 45(1): 66-72.
[4]刘泽敏, 王磊, 谢屹. 自锁阀激光焊接工艺研究[J]. 火箭推进, 2016, 42(4): 90-96.
LIU Z M, WANG L, XIE Y. Study on laser welding technology for latching valve[J]. Journal of Rocket Propulsion, 2016, 42(4): 90-96.
[5]李鹏频, 景迪, 路正道, 等. 双相不锈钢小径管焊缝相控阵检测工艺及应用[J]. 焊接技术, 2022, 51(S1): 121-125.
LI P P, JING D, LU Z D, et al. Phased array detection technology and application of weld seam of duplex stainless steel small diameter pipe[J]. Welding Technology, 2022, 51(S1): 121-125.
[6]叶新, 朱序东, 汤建帮, 等. 反应堆压力容器厚壁焊缝的相控阵超声检测[J]. 无损检测, 2023, 45(7): 65-69.
YE X, ZHU X D, TANG J B, et al. Phased array ultrasonic testing for thick-wall welds of reactor pressure vessels[J]. Nondestructive Testing, 2023, 45(7): 65-69.
[7]赵灿, 王建超, 张健, 等. 发生器头部电子束焊缝熔深相控阵超声检测[J]. 火箭推进, 2022, 48(5): 84-92.
ZHAO C, WANG J C, ZHANG J, et al. Phased array ultrasonic testing of electron beam weld penetration at generator head[J]. Journal of Rocket Propulsion, 2022, 48(5): 84-92.
[8]周世圆, 郑翀, 赵灿, 等. 喷注器焊缝熔深超声相控阵定量检测[J]. 北京理工大学学报, 2023, 43(8): 863-869.
ZHOU S Y, ZHENG C, ZHAO C, et al. Ultrasonic phased array technology based quantitative detection of weld penetration depth for injector[J]. Transactions of Beijing Institute of Technology, 2023, 43(8): 863-869.
[9]王飞, 涂俊, 危荃, 等. 某薄壁构件搅拌摩擦焊锁底焊缝的超声相控阵检测[J]. 无损检测, 2017, 39(5): 17-20.
WANG F, TU J, WEI Q, et al. Ultrasonic phased array testing of friction stir welded thin-walled lock welds[J]. Nondestructive Testing, 2017, 39(5): 17-20.
[10]卢超, 钟德煌. 超声相控阵检测技术及应用[M]. 北京: 机械工业出版社, 2021.
[11]何慈武, 杨萌萌, 龙晋桓, 等. 小径薄壁管座角焊缝典型缺陷的超声相控阵CIVA仿真研究[J]. 中国机械工程, 2022, 33(9): 1065-1072.
HE C W, YANG M M, LONG J H, et al. Ultrasonic phased array civa simulation of typical defects in fillet welds of small-diameter thin-walled tube bases[J]. China Mechanical Engineering, 2022, 33(9): 1065-1072.
[12]钱盛杰, 黄海军, 赖圣, 等. 流量计对接焊缝超声相控阵CIVA仿真研究[J]. 石油化工设备技术, 2019, 40(4): 50-54.
QIAN S J, HUANG H J, LAI S, et al. Simulation research on ultrasonic phased array civa of flowmeter butt weld[J]. Petrochemical Equipment Technology, 2019, 40(4): 50-54.
[13]钱盛杰,强天鹏,杨贵德,等,基于CIVA软件的全聚焦相控阵声场特性仿真[J].无损检测,2022, 44(6):15-25.
QIAN S J, QIANG T P, YANG G D, et al. Simulation of acoustic field characteristics of fully focused phased array based on CIVA software[J]. Nondestructive Testing, 2022, 44(6):15-25.
[14]张子健, 吴家喜, 张小龙, 等. 压力管道对接焊缝典型缺陷的相控阵CIVA仿真与检测[J]. 无损检测, 2019, 41(3): 45-51.
ZHANG Z J, WU J X, ZHANG X L, et al. Phased array CIVA simulation and detection of typical defects of butt weld of pressure pipeline[J]. Nondestructive Testing, 2019, 41(3): 45-51.
[15]张鑫, 林莉, 金士杰. 奥氏体不锈钢窄间隙焊缝侧壁未熔合相控阵超声检测[J]. 应用声学, 2021, 40(1): 97-102.
ZHANG X, LIN L, JIN S J. Phased array ultrasonic testing for lack of sidewall fusion in narrow gap welding of austenitic stainless steel[J]. Journal of Applied Acoustics, 2021, 40(1): 97-102.
[16]谢航, 张益成, 周礼峰, 等. 奥氏体不锈钢管道环焊缝的超声相控阵检测[J]. 无损检测, 2017, 39(3): 23-25.
XIE H, ZHANG Y C, ZHOU L F, et al. Ultrasonic phased array testing for the girth weld of austenitic stainless steel pipeline[J]. Nondestructive Testing, 2017, 39(3): 23-25.
[17]郑晖,阎长周,侯金刚.等,承压设备无损检测第15部分:相控阵超声检测:NB/T 47013.15—2021 [S]. 北京:国家能源局,2021.
[18]侯金刚, 朱雨虹, 杨齐, 等. 相控阵超声传感器的参数选择[J]. 西部特种设备, 2018(3): 40-44.
HOU J G, ZHU Y H, YANG Q, et al. Parameter selection of phased array ultrasonic sensor[J]. Western Special Equipment, 2018(3): 40-44.
[19]李衍. 超声相控阵技术:第五部分:相控阵超声主要公式和基本参数[J]. 无损探伤, 2008, 32(5): 25-34.
LI Y. Ultrasonic phased array technology: part V: main formulas and basic parameters of phased array ultra-sound[J]. Nondestructive Testing Technology, 2008, 32(5): 25-34.
[20]戈浩. 相控阵超声检测横向分辨力的影响因素[J]. 无损检测, 2018, 40(7): 27-30.
GE H. Influence factors of the lateral resolution of phased array ultrasonic detection[J]. Nondestructive Testing, 2018, 40(7): 27-30.

Memo

Memo:
-
Last Update: 1900-01-01