|Table of Contents|

Research progress on hypergolic ionic liquid propellant with short ignition delay time(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
33-43
Research Field:
目次
Publishing date:

Info

Title:
Research progress on hypergolic ionic liquid propellant with short ignition delay time
Author(s):
FEI Teng XU Ran ZHAO Pengyu XU Tao DU Zonggang
Xi'an Aerospace Propulsion Test Technique Institute, Xi'an 710100, China
Keywords:
liquid propellant hypergolic ionic liquid ignition delay time organic synthesis compounded system
PACS:
TJ55
DOI:
10.3969/j.issn.1672-9374.2024.05.003
Abstract:
Hypergolic liquid propellant can not only simplify the design of liquid rocket engine, but also realize multiple trouble-free ignitions and improve the operation safety of launch vehicles, which is one of the research focuses in the field of aerospace propulsion technology. Reducing the ignition delay time of hypergolic propellant can not only improve the reliability of start-up process of engine and the combustion efficiency of propellant, but also avoid the accumulation of propellant in the combustion chamber, which will cause excessive pressure peak or trigger violent oscillation combustion and explosion. Due to the advantages of low vapor pressure, adjustable physicochemical properties and low toxicity, hypergolic ionic liquids(HILs)are expected to compensate or replace hydrazine as the fuel of liquid propellant. Based on the combustion performance of ignition delay time less than 5 ms, the synthesis and preparation methods of HILs and compounded system are reviewed. According to the requirements of hypergolic combustion propulsion system, although the existing HILs or compounded system with short ignition delay have the potential to become the future green hypergolic propellant fuel, there are some constraint problems such as high viscosity, complex combustion products and low specific impulse. Therefore, in order to accelerate the application of HILs or compounded system in engineering, it is necessary to carry out theoretical and experimental research on the aspects of performance improvement, engineering applicability, system matching, etc..

References:

[1] 李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011.
[2]CAISSO P, SOUCHIER A, ROTHMUND C, et al. A liquid propulsion panorama[J]. Acta Astronautica, 2009, 65(11): 1723-1737.
[3]符全军. 液体推进剂的现状及未来发展趋势[J]. 火箭推进, 2004, 30(1): 1-6.
FU Q J. Development status and trends of liquid propellant[J]. Journal of Rocket Propulsion, 2004, 30(1): 1-6.
[4]谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308.
TAN Y H. Research on large thrust liquid rocket engine[J]. Journal of Astronautics, 2013, 34(10): 1303-1308.
[5]KANG H, PARK S, PARK Y, et al. Ignition-delay measurement for drop test with hypergolic propellants: reactive fuels and hydrogen peroxide[J]. Combustion and Flame, 2020, 217: 306-313.
[6]DURGAPAL U C, VENUGOPAL V K. Hypergolic ignition of rocket propellants with nitric acid containing dissolved nitrogen tetroxide[J]. AIAA Journal, 1974, 12(11): 1611-1612.
[7]杜宗罡, 史雪梅, 符全军. 高能液体推进剂研究现状和应用前景[J]. 火箭推进, 2005, 31(3): 30-34.
DU Z G, SHI X M, FU Q J. Development status and prospect of higher energy liquid propellant[J]. Journal of Rocket Propulsion, 2005, 31(3): 30-34.
[8]贺芳, 方涛, 李亚裕, 等. 新型绿色液体推进剂研究进展[J]. 火炸药学报, 2006, 29(4): 54-57.
HE F, FANG T, LI Y Y, et al. Development of green liquid propellants[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 54-57.
[9]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[10]焦念明, 张延强. 离子液体自燃推进剂的研究进展[J]. 工程研究, 2022, 14(6): 483-498.
JIAO N M, ZHANG Y Q. Research on hypergolic ionic liquid propellants[J]. Journal of Engineering Studies, 2022, 14(6): 483-498.
[11]SCHNEIDER S, HAWKINS T, ROSANDER M, et al. Ionic liquids as hypergolic fuels[J]. Energy & Fuels, 2008, 22(4): 2871-2872.
[12]ZHANG Q H, SHREEVE J M. Ionic liquid propellants: Future fuels for space propulsion[J]. Chemistry, 2013, 19(46): 15446-15451.
[13]ZHANG Q H, SHREEVE J M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry[J]. Chemical Reviews, 2014, 114(20): 10527-10574.
[14]FEI T, ZHANG Y, DU Y, et al. Review on hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2016, 24(10): 1017-1028.
[15]ZHANG Y Q, GAO H X, JOO Y H, et al. Ionic liquids as hypergolic fuels[J]. Angewandte Chemie, 2011, 50(41): 9554-9562.
[16]张光全. 离子液体在含能材料领域的应用进展[J]. 含能材料, 2012, 20(2): 240-247.
ZHANG G Q. Application progress of ionic liquid in energetic materials[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 240-247.
[17]DALLAS J A, RAVAL S, ALVAREZ GAITAN J P, et al. The environmental impact of emissions from space launches: A comprehensive review[J]. Journal of Cleaner Production, 2020, 255: 120209.
[18]WANG M, WANG Z Y, ZHANG J C, et al. Synthesis and properties of bio-renewable ionic salts derived from theophylline as green hypergolic fuels[J]. Journal of Molecular Liquids, 2023, 372: 121207.
[19]BISWAS P, WANG Y J, HAGEN E, et al. Electrochemical modulation of the flammability of ionic liquid fuels[J]. Journal of the American Chemical Society, 2023, 145(30): 16318-16323.
[20]MOTA F A S, LIU M Y, MOHSEN A A A, et al. Development of polyamine/alkanolamine-based hypergolics with hydrogen peroxide: A new route to N-methylimidazole with MDEA as a promising green fuel[J]. Fuel, 2024, 357: 129798.
[21]WANG Y J, WANG X Y, XU H, et al. One-dimensional copper bromide based inorganic-organic hybrids as fuels for hypergolic bipropellants with hydrogen peroxide as oxidizer[J]. Chemical Engineering Journal, 2023, 455: 140587.
[22]SMIGLAK M, METLEN A, ROGERS R D. The second evolution of ionic liquids: From solvents and separations to advanced materials: energetic examples from the ionic liquid cookbook[J]. Accounts of Chemical Research, 2007, 40(11): 1182-1192.
[23]MCCRARY P D, CHATEL G, ALANIZ S A, et al. Evaluating ionic liquids as hypergolic fuels: Exploring reactivity from molecular structure[J]. Energy & Fuels, 2014, 28(5): 3460-3473.
[24]JIAO N M, YUAN Y Y, YAO Y, et al. Strained carbocycle based hypergolic ionic fuels with the improved energy capacity[J]. Fuel Processing Technology, 2022, 231: 107248.
[25]ZHANG Y Q, GAO H X, GUO Y, et al. Hypergolic N, N-dimethylhydrazinium ionic liquids[J]. Chemistry, 2010, 16(10): 3114-3120.
[26]HE L, TAO G H, PARRISH D A, et al. Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels[J]. Chemistry, 2010, 16(19): 5736-5743.
[27]费腾, 蔡会武, 李志敏, 等. 双(咪唑)硼烷类自燃离子液体的合成、表征及性质[J]. 含能材料, 2015, 23(10): 952-958.
FEI T, CAI H W, LI Z M, et al. Synthesis, characterization and properties of bis(imidazole)dihydroboronium hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2015, 23(10): 952-958.
[28]JOO Y H, GAO H X, ZHANG Y Q, et al. Inorganic or organic azide-containing hypergolic ionic liquids[J]. Inorganic Chemistry, 2010, 49(7): 3282-3288.
[29]GAO H X, JOO Y H, TWAMLEY B, et al. Hypergolic ionic liquids with the 2, 2-dialkyltriazanium cation[J]. Angewandte Chemie, 2009, 48(15): 2792-2795.
[30]SUN C G, TANG S K, ZHANG X W. Role of cation structures for energetic performance of hypergolic ionic liquids[J]. Energy & Fuels, 2017, 31(9): 10055-10059.
[31]ZHANG Y Q, SHREEVE J M. Dicyanoborate-based ionic liquids as hypergolic fluids[J]. Angewandte Chemie, 2011, 50(4): 935-937.
[32]LI S Q, GAO H X, SHREEVE J M. Borohydride ionic liquids and borane/ionic-liquid solutions as hypergolic fuels with superior low ignition-delay times[J]. Angewandte Chemie, 2014, 53(11): 2969-2972.
[33]CHAND D, ZHANG J H, SHREEVE J M. Borohydride ionic liquids as hypergolic fuels: A quest for improved stability[J]. Chemistry, 2015, 21(38): 13297-13301.
[34]ZHANG Q H, YIN P, ZHANG J H, et al. Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels[J]. Chemistry, 2014, 20(23): 6909-6914.
[35]LIU T L, QI X J, HUANG S, et al. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels[J]. Chemical Communications, 2016, 52(10): 2031-2034.
[36]翁欣妍, 杜宗罡, 于君, 等. 含BH3(CN)BH2(CN)-阴离子的离子液体自着火过程的实验研究[J]. 含能材料, 2018, 26(7): 557-564.
WENG X Y, DU Z G, YU J, et al. Experimental study of hypergolic process of ionic liquids with BH3(CN)BH2(CN)-anion[J]. Chinese Journal of Energetic Materials, 2018, 26(7): 557-564.
[37]ZHANG W Q, QI X J, HUANG S, et al. Bis(borano)hypophosphite-based ionic liquids as ultrafast-igniting hypergolic fuels[J]. Journal of Materials Chemistry A, 2016, 4(23): 8978-8982.
[38]HUANG S, QI X J, LIU T L, et al. Towards safer rocket fuels: Hypergolic imidazolylidene-borane compounds as replacements for hydrazine derivatives[J]. Chemistry-A European Journal, 2016, 22(29): 10187-10193.
[39]LI X Y, HUO H Y, LI H B, et al. Cyanotetrazolylborohydride(CTB)anion-based ionic liquids with low viscosity and high energy capacity as ultrafast-igniting hypergolic fuels[J]. Chemical Communications, 2017, 53(59): 8300-8303.
[40]JIAO N M, ZHANG Y Q, LIU L, et al. Hypergolic fuels based on water-stable borohydride cluster anions with ultralow ignition delay times[J]. Journal of Materials Chemistry A, 2017, 5(26): 13341-13346.
[41]ZHANG S G, ZHANG J H, ZHANG Y, et al. Nanoconfined ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6755-6833.
[42]ZHOU T, GUI C M, SUN L G, et al. Energy applications of ionic liquids: Recent developments and future prospects[J]. Chemical Reviews, 2023, 123(21): 12170-12253.
[43]邓友全. 离子液体: 性质、制备与应用[M]. 北京: 中国石化出版社, 2006.
[44]SEBASTIAO E, COOK C, HU A G, et al. Recent developments in the field of energetic ionic liquids[J]. Journal of Materials Chemistry A, 2014, 2(22): 8153-8173.
[45]RANKE J, STOLTE S, STÖRMANN R, et al. Design of sustainable chemical products: The example of ionic liquids[J]. Chemical Reviews, 2007, 107(6): 2183-2206.
[46]LEE J W, SHIN J Y, CHUN Y S, et al. Toward understanding the origin of positive effects of ionic liquids on catalysis: Formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids[J]. Accounts of Chemical Research, 2010, 43(7): 985-994.
[47]GAO H X, SHREEVE J M. Ionic liquid solubilized boranes as hypergolic fluids[J]. Journal of Materials Chemistry, 2012, 22(22): 11022-11024.
[48]MCCRARY P D, BARBER P S, KELLEY S P, et al. Nonaborane and decaborane cluster anions can enhance the ignition delay in hypergolic ionic liquids and induce hypergolicity in molecular solvents[J]. Inorganic Chemistry, 2014, 53(9): 4770-4776.
[49]PIALAT A, KITOS A A, WITKOWSKI T G, et al. Achieving short ignition delay and high specific impulse with cyanoborohydride-based hypergolic ionic liquids[J]. New Journal of Chemistry, 2022, 46(44): 21212-21220.
[50]ZHANG X W, PAN L, WANG L, et al. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
[51]MCCRARY P D, BEASLEY P A, COJOCARU O A, et al. Hypergolic ionic liquids to mill, suspend, and ignite boron nanoparticles[J]. Chemical Communications, 2012, 48(36): 4311-4313.
[52]方杰, 王尊, 严浩, 等. 双模式离子液体推进剂真空条件催化点火特性[J]. 火箭推进, 2022, 48(5): 1-8.
FANG J, WANG Z, YAN H, et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[53]高鹤, 李少龙, 严浩, 等. 双模式离子液体推进剂的分解特性与热试车实验研究[J]. 空间控制技术与应用, 2021, 47(4): 41-47.
GAO H, LI S L, YAN H, et al. The decomposition characteristics and the hot fire test of a dual-mode ionic liquid propellant[J]. Aerospace Control and Application, 2021, 47(4): 41-47.

Memo

Memo:
-
Last Update: 1900-01-01