|Table of Contents|

Pyrolysis endothermic and oxidative exothermic mechanisms of JP-10 unraveled by ReaxFF molecular dynamics simulation(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
53-64
Research Field:
目次
Publishing date:

Info

Title:
Pyrolysis endothermic and oxidative exothermic mechanisms of JP-10 unraveled by ReaxFF molecular dynamics simulation
Author(s):
LIU Han12XIAO Yuanyuan12ZHENG Mo12REN Chunxing1LI Xiaoxia12
1.State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering,Chinese Academy of Sciences, Beijing 100190, China; 2.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Keywords:
endothermic hydrocarbon fuel molecular dynamics simulation ReaxFF JP-10 endothermic reaction mechanism oxidation reaction mechanism
PACS:
V312.1
DOI:
10.3969/j.issn.1672-9374.2024.05.005
Abstract:
Understanding the mechanisms of pyrolysis endothermic and oxidative exothermic reactions is vital in developing endothermic hydrocarbon fuel in reducing engine surface temperature of hypersonic vehicle. In this paper, the reaction mechanisms of endothermic and exothermic processes were revealed for the widely used endothermic fuel of JP-10 by ReaxFF molecular dynamics simulations(ReaxFF MD). The heat-up simulation results show that the transition point from endothermic to exothermic for the total reaction heat effect of JP-10 oxidation system is around 2 600 K. The absorbed heat of the ring-opening reactions in the endothermic stage accounts for about 64% of the total heat absorption. The stepwise reactions of H free radicals and O2 into HO2 and HO free radicals, and HO2 and HO into H2O will release a large amount of heat, accounting for about 54% of the total heat release in the oxidation stage. This work demonstrates that reaction energy analysis of ReaxFF MD simulations is potentially a new approach for identifying important reaction pathways and understanding the effects of fuel molecular structures on fuel endothermic capacity and fuel pyrolyzate composition on fuel oxidative exothermic capacity.

References:

[1] 刘大响, 金捷. 21世纪世界航空动力技术发展趋势与展望[J]. 中国工程科学, 2004, 6(9): 1-8.
LIU D X, JIN J. The development trends and prospect of world aeropropulsion technology in the 21st century[J]. Strategic Study of CAE, 2004, 6(9): 1-8.
[2]符全军, 燕珂, 杜宗罡, 等. 吸热型碳氢燃料研究进展[J]. 火箭推进, 2005, 31(5): 32-36.
FU Q J, YAN K, DU Z G, et al. Research progress of endothermic hydrocarbon fuels[J]. Journal of Rocket Propulsion, 2005, 31(5): 32-36.
[3]EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[4]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[5]熊中强, 米镇涛, 张香文, 等. 合成高密度烃类燃料研究进展[J]. 化学进展, 2005, 17(2): 359-367.
XIONG Z Q, MI Z T, ZHANG X W, et al. Development of synthesized high-density hydrocarbon fuels[J]. Progress in Chemistry, 2005, 17(2): 359-367.
[6]杜宗罡, 史雪梅, 符全军. 高能液体推进剂研究现状和应用前景[J]. 火箭推进, 2005, 31(3): 30-34.
DU Z G, SHI X M, FU Q J. Development status and prospect of higher energy liquid propellant[J]. Journal of Rocket Propulsion, 2005, 31(3): 30-34.
[7]周劲松, 冯渐超, 张志勇, 等. 环戊二烯合成巡航导弹用高密度烃燃料[J]. 化学推进剂与高分子材料, 2003, 1(2): 17-21.
ZHOU J S, FENG J C, ZHANG Z Y, et al. Synthesis of high density hydrocarbon fuel from cyclopentadiene for cruise missile[J]. Chemical Propellants & Polymeric Materials, 2003, 1(2): 17-21.
[8]焦燕, 冯利利, 朱岳麟, 等. 美国军用喷气燃料发展综述[J]. 火箭推进, 2008, 34(1): 30-35.
JIAO Y, FENG L L, ZHU Y L, et al. Review of American military jet fuels development[J]. Journal of Rocket Propulsion, 2008, 34(1): 30-35.
[9]邢燕, 方文军, 谢文杰, 等. 吸热型碳氢燃料模型化合物在超临界条件下的裂解及热沉测定[J]. 化学学报, 2008, 66(20): 2243-2247.
XING Y, FANG W J, XIE W J, et al. Thermal cracking and heat sink measurement of model compounds of endothermic hydrocarbon fuels under supercritical conditions[J]. Acta Chimica Sinica, 2008, 66(20): 2243-2247.
[10]VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
[11]CHENOWETH K, VAN DUIN A C T, DASGUPTA S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1740-1746.
[12]HAN S, LI X X, ZHENG M, et al. Initial reactivity differences between a 3-component surrogate model and a 24-component model for RP-1 fuel pyrolysis evaluated by ReaxFF MD[J]. Fuel, 2018, 222: 753-765.
[13]ZHAO P, HAN S, LI X X, et al. Comparison of RP-3 pyrolysis reactions between surrogates and 45-component model by ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2019, 33(8): 7176-7187.
[14]ASHRAF C, SHABNAM S, JAIN A, et al. Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study[J]. Fuel, 2019, 235: 194-207.
[15]LELE A, KWON H, GANESHAN K, et al. ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel[J]. Fuel, 2021, 297: 120724.
[16]KWON H, LELE A, ZHU J Q, et al. ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels[J]. Fuel, 2020, 279: 118548.
[17]ZHENG M, LI X X, GUO L. Algorithms of GPU-enabled reactive force field(ReaxFF)molecular dynamics[J]. Journal of Molecular Graphics and Modelling, 2013, 41: 1-11.
[18]LIU J, LI X X, GUO L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations[J]. Journal of Molecular Graphics and Modelling, 2014, 53: 13-22.
[19]LI X X, ZHENG M, REN C X, et al. ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion[J]. Energy & Fuels, 2021, 35(15): 11707-11739.
[20]LIU H, LIANG J H, HE R N, et al. Overall mechanism of JP-10 pyrolysis unraveled by large-scale reactive molecular dynamics simulation[J]. Combustion and Flame, 2022, 237: 111865.
[21]SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions[J]. NPJ Computational Mathematics, 2016, 2: 15011.
[22]MAO Q, FENG M Y, JIANG X Z, et al. Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems[J]. Progress in Energy and Combustion Science, 2023, 97: 101084.
[23]QIN X M, XIE H J, YUE L, et al. A quantum chemistry study on thermochemical properties of high energy-density endothermic hydrocarbon fuel JP-10[J]. Journal of Molecular Modeling, 2014, 20(4): 2183.
[24]ZEHE M J, JAFFE R L. Theoretical calculation of jet fuel thermochemistry. 1. tetrahydrodicylopentadiene(JP10)thermochemistry using the CBS-QB3 and G3(MP2)//B3LYP methods[J]. The Journal of Organic Chemistry, 2010, 75(13): 4387-4391.
[25]CHENOWETH K, VAN DUIN A C T, GODDARD W. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053.
[26]LI S, VARATHARAJAN B, WILLIAMS F. Chemistry of JP-10 ignition[J]. AIAA Journal, 2001, 39: 2351-2356.
[27]GAO C W, VANDEPUTTE A G, YEE N W, et al. JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation[J]. Combustion and Flame, 2015, 162(8): 3115-3129.
[28]ZHONG B J, ZENG Z M, ZHANG H Z. An experimental and kinetic modeling study of JP-10 combustion[J]. Fuel, 2022, 312: 122900.
[29]JIANG H P, SHEN W, BAI S J, et al. Revised HyChem modeling combustion chemistry of air-breathing high-energy density jet fuel: JP-10[J]. Combustion and Flame, 2023, 248: 112578.
[30]WANG H, XU R, WANG K, et al. A physics-based approach to modeling real-fuel combustion chemistry-I. evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[J]. Combustion and Flame, 2018, 193: 502-519.

Memo

Memo:
-
Last Update: 1900-01-01