[1] ALBORZI E, BLAKEY S, GHADBEIGI H, et al. Prediction of growth of jet fuel autoxidative deposits at inner surface of a replicated jet engine burner feed arm[J]. Fuel, 2018, 214: 528-537.
[2]PEI X Y, HOU L Y, REN Z Y. Kinetic modeling of thermal oxidation and coking deposition in aviation fuel[J]. Energy & Fuels, 2017, 31(2): 1399-1405.
[3]¶Å×Úî¸, ʷѩ÷, ·ûÈ«¾ü. ¸ßÄÜÒºÌåÍƽø¼ÁÑо¿ÏÖ×´ºÍÓ¦ÓÃÇ°¾°[J]. »ð¼ýÍƽø, 2005, 31(3): 30-34.
DU Z G, SHI X M, FU Q J. Development status and prospect of higher energy liquid propellant[J]. Journal of Rocket Propulsion, 2005, 31(3): 30-34.
[4]·ûÈ«¾ü. ÒºÌåÍƽø¼ÁµÄÏÖ×´¼°Î´À´·¢Õ¹Ç÷ÊÆ[J]. »ð¼ýÍƽø, 2004, 30(1): 1-6.
FU Q J. Development status and trends of liquid propellant[J]. Journal of Rocket Propulsion, 2004, 30(1): 1-6.
[5]Àî¼Îº½, ʯ±£Â», ÕÔÂí½Ü, µÈ. ¸ßÂíºÕÊý·ÉÐÐÌõ¼þϳ¬È¼³åѹ·¢¶¯»úȼÉÕ×éÖ¯·½°¸ÊýֵģÄâ[J]. »ð¼ýÍƽø, 2023, 49(5): 1-12.
LI J H, SHI B L, ZHAO M J, et al. Numerical simulation on combustion organization scheme of scramjet at high Mach number[J]. Journal of Rocket Propulsion, 2023, 49(5): 1-12.
[6]Íõ¾µä¿, Íõ³É¸Õ, ³ÂÑ©½¿, µÈ. RBCC×éºÏ¶¯Á¦ÓÃÒºÌåÍƽø¼ÁÑо¿½øÕ¹[J]. »ð¼ýÍƽø, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[7]MAURICE L Q, LANDER H, EDWARDS T, et al. Advanced aviation fuels: A look ahead via a historical perspective[J]. Fuel, 2001, 80(5): 747-756.
[8]JIA T H, PAN L, GONG S, et al. Mechanistic insights into the thermal deposition of highly thermal-stable jet fuel[J]. Fuel, 2020, 276: 118100.
[9]JIA T H, ZHANG X W, LIU Y, et al. A comprehensive review of the thermal oxidation stability of jet fuels[J]. Chemical Engineering Science, 2021, 229: 116157.
[10]JIA T H, PAN L, WANG X Y, et al. Mechanistic insights into the thermal oxidative deposition of C10 hydrocarbon fuels[J]. Fuel, 2021, 285: 119136.
[11]MI J, JIANG P F, DAI Y T, et al. Mechanistic study on oxidative degradation and deposition of exo-tetrahydrodicyclopentadiene[J]. Fuel, 2022, 317: 123533.
[12]ALBORZI E, GADSBY P, ISMAIL M S, et al. Comparative study of the effect of fuel deoxygenation and polar species removal on jet fuel surface deposition[J]. Energy & Fuels, 2019, 33(3): 1825-1836.
[13]ERVIN J S, WILLIAMS T F. Dissolved oxygen concentration and jet fuel deposition[J]. Industrial & Engineering Chemistry Research, 1996, 35(3): 899-904.
[14]Ѧ½ðÇ¿, ÉбûÀ¤, ·áÃÀÀö, µÈ. ÅçÆøȼÁÏÈÈÑõ»¯»úÀí¼°Ñõ»¯Îȶ¨Ìí¼Ó¼ÁµÄÑо¿½øÕ¹[J]. »¯Ñ§Íƽø¼ÁÓë¸ß·Ö×Ó²ÄÁÏ, 2009, 7(1): 17-23.
XUE J Q, SHANG B K, FENG M L, et al. Thermal oxidation mechanism of jet fuel and research advance of additives improving oxidative stability[J]. Chemical Propellants & Polymeric Materials, 2009, 7(1): 17-23.
[15]BEAVER B, GAO L, BURGESS-CLIFFORD C, et al. On the mechanisms of formation of thermal oxidative deposits in jet fuels. are unified mechanisms possible for both storage and thermal oxidative deposit formation for middle distillate fuels?[J]. Energy & Fuels, 2005, 19(4): 1574-1579.
[16]ºØÔ½¿µ, Ê·ÓÀ¸Õ, ÁÖ¿ÆÓî, µÈ. ÅçÆøȼÁÏÈÈÑõ»¯°²¶¨ÐÔµÄÑо¿×ÛÊö[J]. µ±´ú»¯¹¤, 2018, 47(1): 145-151.
HE Y K, SHI Y G, LIN K Y, et al. Review on thermal oxidation stability of jet fuel[J]. Contemporary Chemical Industry, 2018, 47(1): 145-151.
[17]Ñàçæ, µ¥ÊÀȺ, ÍõÀòºì, µÈ. ÒºÌåÍƽø¼ÁÈÈÎȶ¨ÐÔÑо¿·½·¨Ì½ÌÖ[J]. »ð¼ýÍƽø, 2014, 40(2): 90-94.
YAN K, SHAN S Q, WANG L H, et al. Research approach for thermal stability of liquid propellant[J]. Journal of Rocket Propulsion, 2014, 40(2): 90-94.
[18]JIA T H, GONG S, PAN L, et al. Impact of deep hydrogenation on jet fuel oxidation and deposition[J]. Fuel, 2020, 264: 116843.
[19]TÜRKER L, VARI
ÿðþ‰C
S, ÇELIK BAYAR Ç. A theoretical study of JP-10 hydroperoxidation[J]. Fuel, 2013, 104: 128-132.
[20]ÇØЦ÷. ¸ßÃܶÈÎüÈÈÐÍ̼ÇâȼÁϵÄÈÈÎȶ¨ÐÔ[D]. º¼ÖÝ: Õã½´óѧ, 2015.
QIN X M. Thermal stability of endothermic hydrocarbon fuels with high density[D]. Hangzhou: Zhejiang University, 2015.
[21]BALSTER L M, CORPORAN E, DEWITT M J, et al. Development of an advanced, thermally stable, coal-based jet fuel[J]. Fuel Processing Technology, 2008, 89(4): 364-378.
[22]ZABARNICK S, GRINSTEAD R R. Studies of jet fuel additives using the quartz crystal microbalance and pressure monitoring at 140 ¡æ[J]. Industrial & Engineering Chemistry Research, 1994, 33(11): 2771-2777.
[23]GRINSTEAD B, ZABARNICK S. Studies of jet fuel thermal stability, oxidation, and additives using an isothermal oxidation apparatus equipped with an oxygen sensor[J]. Energy & Fuels, 1999, 13(3): 756-760.
[24]TSANAKTSIDIS C G, CHRISTIDIS S G, FAVVAS E P. A novel method for improving the physicochemical properties of diesel and jet fuel using polyaspartate polymer additives[J]. Fuel, 2013, 104: 155-162.
[25]¼ÖͦºÀ. ̼ÇâȼÁϸ÷×é·Ö¶ÔȼÁÏÈÈÑõ»¯°²¶¨ÐÔµÄÓ°Ïì¹æÂÉÑо¿[D]. Ìì½ò: Ìì½ò´óѧ, 2021.
JIA T H. Study on the effect of hydrocarbon fuel components on fuel thermal oxidation stability[D]. Tianjin: Tianjin University, 2021.
[26]KIM Y, KIM J, HYEON D H, et al. Development of PIBSI type dispersants for carbon deposit from thermal oxidative decomposition of Jet A-1[J]. Fuel, 2015, 158: 91-97.
[27]ÇØÖÁÕé. ÐÂÐÍPIBSAEÇå¾»·ÖÉ¢¼ÁµÄºÏ³É¼°ÒÖÖÆÅçÆøȼÁÏÈÈÑõ»¯³Á»ýÐÔÄÜ[D]. Ìì½ò: Ìì½ò´óѧ, 2020.
QIN Z Z. Synthesis and performance of new pibsae dispersants in reducing jet fuel thermal oxidation deposition[D]. Tianjin: Tianjin University, 2020.
[28]CHEVALIER Y, DUBOIS-CLOCHARD M C, DURAND J P, et al. Adsorption of poly(isobutenylsuccinimide)dispersants at a solid-hydrocarbon interface[M]//KOUTSOUKOS P G. Trends in colloid and interface science XV. Berlin: Springer, 2007: 110-114.
[29]BECK Á, PÖLCZMANN G, ELLER Z, et al. Investigation of the effect of detergent-dispersant additives on the oxidation stability of biodiesel, diesel fuel and their blends[J]. Biomass and Bioenergy, 2014, 66: 328-336.
[30]AHMED N S, NASSAR A M, ABDEL-AZIM A A A. Synthesis and evaluation of some detergent/dispersant additives for lube oil[J]. International Journal of Polymeric Materials, 2007, 57(2): 114-124.
[31]SINGH A K, SINGH R K. A search for ecofriendly detergent/dispersant additives for vegetable-oil based lubricants[J]. Journal of Surfactants and Detergents, 2012, 15(4): 399-409.
[32]ÕÅ»³°². Çå¾»·ÖÉ¢¼ÁÌá¸ßÅçÆøȼÁÏÈÈÑõ»¯°²¶¨ÐÔÑо¿[D]. ±±¾©: ±±¾©»¯¹¤´óѧ, 2003.
ZHANG H A. The research of using dispersant to improve thermal oxidation stability of jet fuel[D]. Beijing: Beijing University of Chemical Technology, 2003.
[33]SINGH R K, KUKRETY A, SINGH A K. Study of novel ecofriendly multifunctional lube additives based on pentaerythritol phenolic ester[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(8): 1959-1967.
[34]MI J, YE D F, DAI Y T, et al. Strategically designed macromolecules as additives for high energy-density hydrocarbon fuels[J]. Fuel, 2020, 270: 117433.
[35]MI J, YE C, GUO Y S, et al. Strategical design of bridged vanillic Schiff-bases as jet fuel antioxidants[J]. Fuel, 2023, 351: 128834.
[36]ÑîÊöÃ÷, л²ýÁØ, ³ÌÓñÇ¿, µÈ. ÒºÌå»ð¼ý·¢¶¯»ú½¡¿µ¼à¿Ø¼¼ÊõÑо¿½øÕ¹[J]. »ð¼ýÍƽø, 2024, 50(1): 28-45.
YANG S M, XIE C L, CHENG Y Q, et al. Research progress in health monitoring technology for liquid rocket engines[J]. Journal of Rocket Propulsion, 2024, 50(1): 28-45.
[37]ABDEL-KHALEK N A, OMAR A M A, BARAKAT Y. Relationship of structure to properties of some anionic surfactants as collectors in the flotation process. 1. effect of chain length[J]. Journal of Chemical & Engineering Data, 1999, 44(1): 133-137.
[38]QIN Z Z, LIU Z Q, WANG L, et al. Synthesis and performance of a series of polyisobutylene-substituted succinic acid ester dispersants for reducing thermal oxidation deposition of jet fuel[J]. Energy & Fuels, 2020, 34(5): 5634-5640.
[39]FORBES E S, NEUSTADTER E L. The mechanism of action of polyisobutenyl succinimide lubricating oil additives[J]. Tribology, 1972, 5(2): 72-77.
[40]AHMED N S, NASSAR A M, ABDEL-HAMEED H S, et al. Preparation, characterization, and evaluation of some ashless detergent/dispersant additives for lubricating engine oil[J]. Applied Petrochemical Research, 2016, 6(1): 49-58.
[41]ALEMÁN-VÁZQUEZ L O, VILLAG¦„MEZ-IBARRA J R. Polyisobutenylsuccinimides as detergents and dispersants in fuel: Infrared spectroscopy application[J]. Fuel, 2001, 80(7): 965-968.
[42]SCHWAHN H, LUTZ U, KRAMER U. Deposit formation of flex fuel engines operated on ethanol and gasoline blends[J]. SAE International Journal of Fuels and Lubricants, 2010, 3(2): 22-37.
[43]¹ú¼ÒÊг¡¼à¶½¹ÜÀí×ܾÖ. 3ºÅÅçÆøȼÁÏ: GB 6537¡ª2018[S]. ±±¾©: Öйú±ê×¼³ö°æÉç, 2018.
State Administration for Market Regulation. Standardization Administration of the People's Republic of China. No.3 jet fuel: GB 6537¡ª2018[S]. Beijing: Standards Press of China, 2018.
[44]American Association for Testing and Materials. Propellant, high density synthetic hydrocarbon type, grade JP-10: AIR FORCE MIL-DTL-87107E[S]. West Conshohocken, PA: ASTM International, 2012.
[45]KABANA C G, BOTHA S, SCHMUCKER C, et al. Oxidative stability of middle distillate fuels. part 1: Exploring the soluble macromolecular oxidatively reactive species(SMORS)mechanism with jet fuels[J]. Energy & Fuels, 2011, 25(11): 5145-5157.
[46]AKSOY P, GÜL Ö, CETINER R, et al. Insight into the mechanisms of middle distillate fuel oxidative degradation. part 2: On the relationship between jet fuel thermal oxidative deposit, soluble macromolecular oxidatively reactive species, and smoke point[J]. Energy & Fuels, 2009, 23(4): 2047-2051.
[47]WANG L, ZOU J J, ZHANG X W, et al. Isomerization of tetrahydrodicyclopentadiene using ionic liquid: Green alternative for Jet Propellant-10 and adamantane[J]. Fuel, 2012, 91(1): 164-169.
[48]American Association for Testing and Materials. Standard test method for oxidation stability of middle distillate fuels: rapid small scale oxidation test(RSSOT): ASTM D7545-13[S]. West Conshohocken, PA: ASTM International, 2014.
[49]HENEGHAN S P, ZABARNICK S, BALLAL D R, et al. JP-8+100: The development of high-thermal-stability jet fuel[J]. Journal of Energy Resources Technology, 1996, 118(3): 170-179.