|Table of Contents|

Rheological properties of supramolecular methylhydrazine gel fuel(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
75-81
Research Field:
目次
Publishing date:

Info

Title:
Rheological properties of supramolecular methylhydrazine gel fuel
Author(s):
SUN Xiaohan SONG Long ZUO Xiangchun SUN Haiyun LIU Jiangqiang TONG Kun
Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
Keywords:
supermolecule methylhydrazine gel propellant noncovalent interaction force rheological property
PACS:
V51
DOI:
10.3969/j.issn.1672-9374.2024.05.007
Abstract:
The study of rheological properties is an important content of gel propellant research, and its results can provide a basis for the study of atomization and combustion properties of propellant. The interior of supramolecular methylhydrazine gel propellant is supported by non-covalent interaction forces such as hydrogen bonds, forming a network structure, and its rheological properties are closely related to the content of gelling agent and temperature conditions. The experimental results show that the higher the content of gelling agent, the more stable the system is. When the mass fraction of gelling agent is 1.2%, supramolecular methylhydrazine gel fuel can obtain the highest energy performance and ensure stability at the same time. With the increase of system temperature, the hydrogen bonding force forming gel network structure will weaken, and the limiting effect on molecules will also weaken. Reflected in the rheological properties, the viscosity and shear stress of the system decrease with the increase of temperature. When it reaches 50 ℃, supramolecular methylhydrazine gel fuel is at the critical point of gel-solution transition. Supramolecular methylhydrazine gel fuel also has shear recovery, and its viscosity decreases only a little after 10 shear processes.

References:

[1] 陈世武. 凝胶推进剂的由来与发展[J]. 火炸药, 1996(1): 47-52.
CHEN S W. Source and development of gel propellant[J]. Explosives & Propellents, 1996(1): 47-52.
[2]李三军. 凝胶推进剂研究进展[J]. 化学推进剂与高分子材料, 1998(2): 3-5.
LI S J. Research progress of gel propellant[J]. Chemical Propellants & Polymeric Materials, 1998(2): 3-5.
[3]王中, 梁勇, 刘素梅, 等. 美、俄、德凝胶推进剂的发展现状[J]. 飞航导弹, 2010(2): 76-79.
WANG Z, LIANG Y, LIU S M, et al. Development status of gel propellants in the United States, Russia and Germany[J]. Aerodynamic Missiles Journal, 2010(2): 76-79.
[4]王宁飞, 莫红军, 樊学忠. 凝胶推进剂的发展及应用[J]. 含能材料, 1998, 6(3): 139-144.
WANG N F, MO H J, FAN X Z. A review on development and application of gelled propellants[J]. Chinese Journal of Energetic Materials, 1998, 6(3): 139-144.
[5]任建军. 国外空间攻防武器动力系统技术发展概述[J]. 火箭推进, 2012, 38(1): 7-11.
REN J J. Overview of technology development of propulsion systems for space attack and defense weapons abroad[J]. Journal of Rocket Propulsion, 2012, 38(1): 7-11.
[6]王镜淇,王成刚,陈雪娇,等.RBCC组合动力用液体推进剂研究进展[J].火箭推进,2022,48(6):101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022,48(6):101-112.
[7]LI B, HE T, FAN Y Q, et al. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly[J]. Chemical Communications, 2019, 55(56): 8036-8059.
[8]CHIVERS P R A, SMITH D K. Shaping and structuring supramolecular gels[J]. Nature Reviews Materials, 2019, 4(7): 463-478.
[9]LIU M H, OUYANG G H, NIU D, et al. Supramolecular gelatons: towards the design of molecular gels[J]. Organic Chemistry Frontiers, 2018, 5(19): 2885-2900.
[10]NUTHANAKANTI A, SRIVATSAN S G. Surface-tuned and metal-ion-responsive supramolecular gels based on nucleolipids[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22864-22874.
[11]THAMIZHANBAN A, LALITHA K, SARVEPALLI G P, et al. Smart supramolecular gels of enolizable amphiphilic glycosylfuran[J]. Journal of Materials Chemistry B, 2019, 7(40): 6238-6246.
[12]PRAKASH R, ESMAEILI M, GBADAMOSI F A, et al. Supramolecular gelation of triphenylamine bis-urea macrocycles in toluene[J]. Macromolecules, 2024, 57(3): 1312-1318.
[13]CAO X H, GAO A P, HOU J T, et al. Fluorescent supramolecular self-assembly gels and their application as sensors: A review[J]. Coordination Chemistry Reviews, 2021, 434: 213792.
[14]WEHRMAN M D, LINDBERG S, SCHULTZ K M. Impact of shear on the structure and rheological properties of a hydrogenated castor oil colloidal gel during dynamic phase transitions[J]. Journal of Rheology, 2018, 62(2): 437-446.
[15]吕少一, 邵自强, 张振玲, 等. 新型含能纤维素基凝胶推进剂的流变性能研究[J]. 化学学报, 2012, 70(2): 200-206.
LYU S Y, SHAO Z Q, ZHANG Z L, et al. Studies on rheological properties of gelled propellant based on new energetic cellulose[J]. Acta Chimica Sinica, 2012, 70(2): 200-206.
[16]吴其稳, 张华驰, 姚锋, 等. 基于羟丙基纤维素制备乙醇凝胶推进剂[J]. 华东理工大学学报(自然科学版), 2024, 50(2): 185-191.
WU Q W, ZHANG H C, YAO F, et al. Preparation of ethanol gel propellant based on hydroxypropyl cellulose[J]. Journal of East China University of Science and Technology, 2024, 50(2): 185-191.
[17]魏超, 杨伟东, 毛根旺. 某高分子胶凝剂凝胶推进剂模拟液的流变特性[J]. 航空工程进展, 2011, 2(1): 110-114.
WEI C, YANG W D, MAO G W. Rheological behavior of a polymer-gellant gel propellants simulants[J]. Advances in Aeronautical Science and Engineering, 2011, 2(1): 110-114.
[18]杨鸿辉, 赵程程, 王勇, 等. 凝胶推进剂及其流变特性研究进展[J]. 西安交通大学学报, 2022, 56(5): 166-179.
YANG H H, ZHAO C C, WANG Y, et al. Progress in study on gel propellants and their rheological properties[J]. Journal of Xi'an Jiaotong University, 2022, 56(5): 166-179.
[19]吴德志, 孙瑜, 王勇, 等. 凝胶推进剂模拟液静电雾化行为规律研究[J]. 火箭推进, 2018, 44(3): 54-61.
WU D Z, SUN Y, WANG Y, et al. Study on behavior rules of electrostatic atomization for gelled propellant simulant[J]. Journal of Rocket Propulsion, 2018, 44(3): 54-61.
[20]方艾虎, 李凌云, 杨宗蕴, 等. 卵清分离蛋白-亚麻籽油高浓度乳液的制备及胶体性质表征[J]. 食品科学, 2020, 41(8): 21-26.
FANG A H, LI L Y, YANG Z Y, et al. Preparation and colloidal properties of high-concentration linseed oil emulsions stabilized by egg white protein isolate[J]. Food Science, 2020, 41(8): 21-26.
[21]RAHIMI S, PERETZ A, NATAN B. Rheological matching of gel propellants[J]. Journal of Propulsion and Power, 2010, 26(2): 376-379.
[22]COLOMBO G, KIM S, SCHWEIZER T, et al. Superposition rheology and anisotropy in rheological properties of sheared colloidal gels[J]. Journal of Rheology, 2017, 61(5): 1035-1048.

Memo

Memo:
-
Last Update: 1900-01-01