|Table of Contents|

Construction of NTO/UDMH combustion mechanism and analysis of ignition characteristics(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
82-95
Research Field:
目次
Publishing date:

Info

Title:
Construction of NTO/UDMH combustion mechanism and analysis of ignition characteristics
Author(s):
YANG Danqi1ZHUO Danchen1WU Runsheng2JIN Ping13CAI Guobiao13
1.School of Astronautics, Beihang University, Beijing 102206, China; 2.China Manned Space Agency, Beijing 100094, China; 3.National Key Laboratory of Aerospace Liquid Propulsion,Beijing 102206,China
Keywords:
unsymmetrical dimethyl hydrazine nitrogen tetroxide construction of reaction mechanism simplify the mechanism
PACS:
V511.4
DOI:
10.3969/j.issn.1672-9374.2024.05.008
Abstract:
To improve the CFD numerical calculation accuracy of the combustion of hypergolic propellant liquid rocket engines, a detailed combustion mechanism of nitrogen tetroxide(NTO)/unsymmetrical dimethylhydrazine(UDMH)with 63 components 357 elementary reactions was constructed based on the hierarchical method. The detailed mechanism was simplified using a single simplification method and a combination of multiple simplification methods, resulting in 35 components 149 elementary reactions and 23 components 19 elementary reactions that were in good agreement with the detailed mechanism. Based on this, the influence of different pressures, temperatures, and the ratios of oxygen and fuel on the ignition characteristics of the detailed mechanism and simplified mechanism was studied. Increasing the initial pressure will integrally increase equilibrium temperature and ignition delay time of the system. And the higher initial pressure leads to the slower the system equilibrium temperature increment: decreasing from 1 035-1 320 K/MPa to 170-320 K/MPa. Meanwhile, the increase in initial temperature will increase the equilibrium temperature of the system but shorten the ignition delay time. When the initial temperature increases by 1 K, the equilibrium temperature of the system will increase by about 3 K. The growth of the oxygen fuel ratio will lower the system equilibrium temperature and raise the ignition delay time. Larger oxygen fuel ratio results in a rapid increase in ignition delay time. The law provides an important reference and theoretical basis for the study of NTO/UDMH reaction kinetics. The detailed and simplified mechanism constructed helps to establish a more accurate simulation model of engine combustion flow field.

References:

[1] 何博, 丰松江, 聂万胜. 液体火箭自燃推进剂化学着火延迟数值模拟[J]. 系统仿真学报, 2013, 25(4): 612-615.
HE B, FENG S J, NIE W S. Numerical simulation of chemical delay time of liquid rocket hypergolic propellant[J]. Journal of System Simulation, 2013, 25(4): 612-615.
[2]杨 V, 安德松W E. 液体火箭发动机燃烧不稳定性[M]. 张宝炯, 洪鑫, 陈杰, 译. 北京: 科学出版社, 2001.
[3]杨建文, 胡海峰, 李钰航, 等. 液体火箭发动机热过程仿真技术发展概述[J]. 中国航天, 2023(5): 46-52.
YANG J W, HU H F, LI Y H, et al. Review of the development of thermal process simulation technology for liquid rocket engines[J]. Aerospace China, 2023(5): 46-52.
[4]TUAZON E C, CARTER W P L, BROWN R V, et al. Gas-phase reaction of 1, 1-dimethylhydrazine with nitrogen dioxide[J]. The Journal of Physical Chemistry, 1983, 87(9): 1600-1605.
[5]徐亚飞. 偏二甲肼与羟基自由基降解反应机理的理论研究[D]. 重庆: 重庆大学, 2008.
XU Y F. Theoretical study on the degradation mechanism of 1, 1-dimethylhydrazine and hydroxyl radical[D]. Chongqing: Chongqing University, 2008.
[6]黄丹, 刘祥萱, 王煊军, 等. 偏二甲肼大气氧化生成亚硝基二甲胺(NDMA)的机理[J]. 含能材料, 2019, 27(1): 35-40.
HUANG D, LIU X X, WANG X J, et al. Mechanism of forming nitrosodimethylamine by oxidation of unsym-dimethylhydrazine in the atmosphere[J]. Chinese Journal of Energetic Materials, 2019, 27(1): 35-40.
[7]何博, 聂万胜, 庄逢辰. 偏二甲肼有机凝胶液滴蒸发燃烧模型展望[J]. 化学学报, 2013, 71(3): 302-307.
HE B, NIE W S, ZHUANG F C. Prospects of UDMH organic gel droplet evaporation and combustion model[J]. Acta Chimica Sinica, 2013, 71(3): 302-307.
[8]HE B, NIE W S, HE H B. Unsteady combustion model of nonmetalized organic gel fuel droplet[J]. Energy & Fuels, 2012, 26(11): 6627-6639.
[9]HE B, NIE W S, FENG S J, et al. Effects of NTO oxidizer temperature and pressure on hypergolic ignition delay and life time of UDMH organic gel droplet[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(5): 665-684.
[10]娄德全. 非设计工况下自燃推进剂推力室燃烧流动模拟[D]. 北京: 北京航空航天大学, 2010.
[11]CATOIRE L, CHAUMEIX N, PAILLARD C. Chemical kinetic model for monomethylhydrazine/nitrogen tetroxide gas phase combustion and hypergolic ignition[J]. Journal of Propulsion and Power, 2004, 20(1): 87-92.
[12]CATOIRE L, BASSIN X, DUPRE G, et al. Experimental study and kinetic modeling of the thermal decomposition of gaseous monomethylhydrazine: Application to detonation sensitivity[J]. Shock Waves, 1996, 6(3): 139-146.
[13]CATOIRE L, LUDWIG T, BASSIN X, et al. Kinetic modeling of the ignition delays in monomethylhydrazine/oxygen/argon mixtures[J]. Symposium(International)on Combustion, 1998, 27(2): 2359-2365.
[14]CATOIRE L, SWIHART M T. Thermochemistry of species produced from monomethylhydrazine in propulsion and space-related applications[J]. Journal of Propulsion and Power, 2002, 18(6): 1242-1253.
[15]SUN H Y, CATOIRE L, LAW C K. Thermal decomposition of monomethylhydrazine: Shock tube experiments and kinetic modeling[J]. International Journal of Chemical Kinetics, 2009, 41(3): 176-186.
[16]KNAB O, PRECLIK D, ESTUBLIER D. Flow field prediction within liquid film cooled combustion chambers of storable bi-propellant rocket engines[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1998.
[17]ZHANG L B, XU X. Performance prediction of apogee attitude and orbit control thruster for MMH/NTO hypergolic bipropellant[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2014.
[18]巴延涛, 侯凌云, 毛晓芳, 等. 甲基肼/四氧化二氮反应化学动力学模型构建及分析[J]. 物理化学学报, 2014, 30(6): 1042-1048.
BA Y T, HOU L Y, MAO X F, et al. Construction and analysis of a chemical kinetic model for monomethylhydrazine/nitrogen tetroxide reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1042-1048.
[19]尹继辉, 胡洪波, 李远远, 等. MMH/NTO双组元自燃推进剂反应机理简化[J]. 火箭推进, 2021, 47(2): 40-46.
YIN J H, HU H B, LI Y Y, et al. Investigation of reduced chemical kinetic model of MMH/NTO hypergolic propellants[J]. Journal of Rocket Propulsion, 2021, 47(2): 40-46.
[20]王镜淇,王成刚,陈雪娇,等.RBCC组合动力用液体推进剂研究进展[J].火箭推进,2022,48(6):101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022,48(6):101-112.
[21]HOU L Y, FU P F, BA Y T. Chemical mechanism of MMH/NTO and simulation in a small liquid rocket engine[J]. Combustion Science and Technology, 2019, 191(12): 2208-2225.
[22]LEE K H. Numerical simulation on thermal and mass diffusion of MMH-NTO bipropellant thruster plume flow using global kinetic reaction model[J]. Aerospace Science and Technology, 2019, 93: 104882.
[23]LABBE N J. Determining detailed reaction kinetics for nitrogen and oxygen containing fuels[D]. Massachusetts: University of Massachusetts Amherst, 2013.
[24]陈晨. UDMH和NTO双组元液体推进剂反应机理及燃烧特性研究[D]. 北京: 北京航空航天大学, 2016.
[25]郭俊江, 唐石云, 李瑞, 等. 高碳烃宽温度范围燃烧机理构建及动力学模拟[J]. 物理化学学报, 2019, 35(2): 182-192.
GUO J J, TANG S Y, LI R, et al. Mechanism construction and simulation for combustion of large hydrocarbon fuels applied in wide temperature range[J]. Acta Physico-Chimica Sinica, 2019, 35(2): 182-192.
[26]肖虹,房喜荣,李悦,等.常规推进剂发动机高压富氧燃气燃烧处理方法与试验[J].火箭推进,2023,49(1):84-92.
XIAO H, FANG X R, LI Y,et al. Combustion treatment method and test of high pressure oxidizer-rich gas of conventional propellant LRE[J].Journal of Rocket Propulsion,2023,49(1):84-92.
[27]王丹,刘臻丽,周康,等.常温推进剂发生器低压点火动态特性分析[J].火箭推进,2023,49(2):35-41.
WANG D, LIU Z L, ZHOU K, et al. Transient characteristic analysis of low-pressure ignition for normal-temperature propellant generator[J]. Journal of Rocket Propulsion, 2023,49(2):35-41.

Memo

Memo:
-
Last Update: 1900-01-01